SpaceJibe

August 27, 2014

Photos from the first spacecraft to rendezvous with a comet

Filed under: Asteroids, Comets — bferrari @ 4:04 pm

On Wednesday, for the first time ever, a human spacecraft made a controlled rendezvous with acomet. This is what it saw as it approached:

For generations of people raised on sci-fi movies, the video might not look like a huge deal. But it’s pretty amazing to realize that this choppy little clip is an actual image of a real comet — the most detailed look we’ve ever had.

The spacecraft is the European Space Agency’s Rosetta probe, and the comet is 67P/Churyumov–Gerasimenko, a roughly 2.5 mile-wide chunk of rock, dust, and ice that’s currently 250 million miles away from Earth, about halfway between the orbits of Mars and Jupiter.

A close up, taken on August 6th. (ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA)

A close up, taken on August 6th. (ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA)

The probe was launched in 2004 specifically to study this comet, and is now within about 62 miles of it. Rosetta traveled nearly 4 billion miles to get there, looping around Earth and Mars several times in order to use their gravity to add momentum to its flight path. 

Two previous probes have briefly flown by comets, but neither came nearly as close as Rosetta. Additionally, in 2005, NASA’s Deep Impact Probe was intentionally crashed into a comet to analyze its interior.

Rosetta, though, will be the first mission to study a comet close-up for an extended period of time. The plan is for the probe to begin orbiting the comet within the next six weeks and accompany it for about a year, deploying a small landing craft in mid-November to analyze soil and rock samples.

A detail of the comet's surface, taken on August 6th. (ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA)

A detail of the comet’s surface, taken on August 6th. (ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA)

Scientists hope that measurements collected by Rosetta will help us learn more about the composition of comets in general. This sort of information could be quite relevant to understanding the formation of all planets, and even the development of life on Earth: comets formed during the earliest stages of the solar system, and some scientists believe that the water on Earth was originally delivered by comets and asteroids.

For an idea of how big this comet is, we bring you a nice image from the European Space Agency comparing it to some well-known buildings and mountains:

 (European Space Agency)

(European Space Agency)

Source

Advertisements

August 25, 2014

Space plane tech could power hypersonic aircraft for US military

Filed under: Uncategorized — bferrari @ 6:13 am
This artist's illustration depicts the Skylon concept vehicle. (Adrian Mann)

This artist’s illustration depicts the Skylon concept vehicle. (Adrian Mann)

Engine technology being developed for a British space plane could also find its way into hypersonic aircraft built by the U.S. military.

The U.S. Air Force Research Laboratory is studying hypersonic vehicles that would use the Synergetic Air-Breathing Rocket Engine (SABRE), which the English company Reaction Engines Ltd. is working on to power the Skylon space plane, AFRL officials said.

“AFRL is formulating plans to look at advanced vehicle concepts based on Reaction Engine’s heat-exchanger technology and SABRE engine concept,” officials with AFRL, which is based in Ohio, told Space.com via email last month. [The Skylon Space Plane (Images)]

A bold British space plane concept

SABRE and Skylon were invented by Alan Bond and his team of engineers at the Abingdon, England-based Reaction Engines.

SABRE burns hydrogen and oxygen. It acts like a jet engine in Earth’s thick lower atmosphere, taking in oxygen to combust with onboard liquid hydrogen. When SABRE reaches an altitude of 16 miles and five times the speed of sound (Mach 5), however, it switches over to Skylon’s onboard liquid oxygen tank to reach orbit. (Hypersonic flight is generally defined as anything that reaches at least Mach 5.)

Two SABREs will power the Skylon space plane — a privately funded, single-stage-to-orbit concept vehicle t-hat is 276 feet long. At takeoff, the plane will weigh about 303 tons.

The SABRE heat exchanger is also known as a pre-cooler. It will cool the air entering Skylon’s engines from more than 1,832 degrees Fahrenheit down to minus 238 degrees Fahrenheit in one one-hundredth of a second. The oxygen in the chilled air will become liquid in the process. [Skylon’s Many Possible Missions (Video)]

“The [pre-cooler] performance has always been pretty much what we predicted,” Bond explained in an interview with Space.com at the Farnborough International Airshow in England on July 16. “We’ve now done over 700 actual tests. It’s now done as much service as a pre-cooler would in a real engine.”

Bond’s team has also successfully tested the pre-cooler for a problem aviation jet engines have to deal with: foreign objects being sucked in.

“We know it [the pre-cooler] can take debris, insects, leaves,” Bond said.

Working with the U.S. military

Bond estimates that the pre-cooler is now at a technology readiness level (TRL) of about 5. NASA and AFRL use a 1-to-9 TRL scale to describe a technology’s stage of development. According to NASA’s TRL descriptions, 5 represents “thorough testing” of a prototype in a “representative environment.”

The AFRL work is being carried out under a Cooperative Research and Development Agreement (CRADA) with Reaction Engines that was announced in January. AFRL officials told Space.com that they are using computers to model SABRE.

“The Air Force research laboratories in the States have carried out some modeling to verify that the SABRE does actually work, that it is a real engine, and so I am hoping they are going to confirm that very soon,” Bond said.

“This is obviously opening doors in the United States, and again, I can’t say a great deal about that, but we have very good dialogue going across the Atlantic,” he added. “In the next couple of years, it’s going to be quite exciting.”

Bond declined to confirm rumors of organized support within the U.S. aerospace community that involves former senior program managers of the U.S. military’s most high-profile defense projects.

Bond sees Skylon as an international project that would include the U.S. and Europe.

“We’re in dialogue with people across Europe in regard to supplying [rocket engine components]. We don’t want to reinvent the wheel; we’d like to be the engine integrator and put it on our test facilities and run it,” he explained.

Milestones approaching

Two SABRE engines are expected to be tested in 2019. “Hopefully, the earlier part of 2019,” Bond said. “I’d like to feel we can test them on Westcott. That is where the rocket propulsion establishment used to be.” (In the 1950s and 1960s, the United Kingdom had its own space program; the nation launched a satellite called Prospero with its last rocket, Black Arrow, in 1971. Westcott is about a one-hour drive from Reaction Engines’ headquarters).

The SABRE development program is expected to cost 360 million British pounds ($600 million at current exchange rates). “We’ve got 80 million [British pounds] of the 360 million lined up. We’re well on our way to that,” Bond said.

Of the 80 million pounds, 60 million is from the U.K. government. As with thecommercial ventures NASA supports, Reaction Engines has to meet milestones to acquire those government funds.

“We have to meet milestones, but those are programmatic issues,” Bond said. “There is nothing contentious about that; it is just a matter of getting the work done to get there. I think of it as an R&D program, and we’ve done the ‘R’ bit, and this part forward is the ‘D’ bit. We’ve spent years making sure the technology actually works.”

In January, this R&D program reached its third phase, which is split into four sections, known as 3A, 3B, 3C and 3D. Sections 3A and 3B are being carried out in cooperation with the European Space Agency (ESA).

Section 3A began in January and will last until April 2015. It involves the engine’s system design, revising the engine’s layout and studying the impact on Skylon’s performance. This work will cost 8 million euros ($10.7 million, or 6.4 million British pounds), half of which will come from the U.K. government and ESA and the other half from Reaction Engines’ private investment.

“This is it for real now; this isn’t studies anymore,” Bond said. Section 3A will continue until spring 2015, and section 3B is due to start in January 2015, he added. “That is the preliminary design phase,.” Bond said.”

Section 3B will last until the end of 2015. During this section, the characteristics of the engine components will be defined and technical specifications produced.

Section 3C, which starts from mid-2015, will see 10 million euros ($13.37 million, or 8 million British pounds) from the U.K. government spent. The section 3C work with suppliers overlaps section 3B. This is because some of the components will get specifications during 3B before other parts of the engine are fully defined. Those detailed components with specifications can then be given to prospective suppliers during the first few months of section 3C.

“In 3C, we start to do detailed design — what the bearings will look like, who is the supplier going to be, that sort of stuff. This is really exciting stuff. We’re starting to pull the real engine together during the course of next year,” Bond said.

He explained that for section 3C, his company will spend “some of the U.K. government money alongside some of our own private investment.” The government money has “enabled us to raise quite a few millions of private investment to go alongside that, and we’re continuing that [fund-raising] activity,” Bond said.

Source

Space plane tech could power hypersonic aircraft for US military

Filed under: Cool, Earth, Gadgets, Space Ships — bferrari @ 6:13 am
This artist's illustration depicts the Skylon concept vehicle. (Adrian Mann)

This artist’s illustration depicts the Skylon concept vehicle. (Adrian Mann)

Engine technology being developed for a British space plane could also find its way into hypersonic aircraft built by the U.S. military.

The U.S. Air Force Research Laboratory is studying hypersonic vehicles that would use the Synergetic Air-Breathing Rocket Engine (SABRE), which the English company Reaction Engines Ltd. is working on to power the Skylon space plane, AFRL officials said.

“AFRL is formulating plans to look at advanced vehicle concepts based on Reaction Engine’s heat-exchanger technology and SABRE engine concept,” officials with AFRL, which is based in Ohio, told Space.com via email last month. [The Skylon Space Plane (Images)]

A bold British space plane concept

SABRE and Skylon were invented by Alan Bond and his team of engineers at the Abingdon, England-based Reaction Engines.

SABRE burns hydrogen and oxygen. It acts like a jet engine in Earth’s thick lower atmosphere, taking in oxygen to combust with onboard liquid hydrogen. When SABRE reaches an altitude of 16 miles and five times the speed of sound (Mach 5), however, it switches over to Skylon’s onboard liquid oxygen tank to reach orbit. (Hypersonic flight is generally defined as anything that reaches at least Mach 5.)

Two SABREs will power the Skylon space plane — a privately funded, single-stage-to-orbit concept vehicle t-hat is 276 feet long. At takeoff, the plane will weigh about 303 tons.

The SABRE heat exchanger is also known as a pre-cooler. It will cool the air entering Skylon’s engines from more than 1,832 degrees Fahrenheit down to minus 238 degrees Fahrenheit in one one-hundredth of a second. The oxygen in the chilled air will become liquid in the process. [Skylon’s Many Possible Missions (Video)]

“The [pre-cooler] performance has always been pretty much what we predicted,” Bond explained in an interview with Space.com at the Farnborough International Airshow in England on July 16. “We’ve now done over 700 actual tests. It’s now done as much service as a pre-cooler would in a real engine.”

Bond’s team has also successfully tested the pre-cooler for a problem aviation jet engines have to deal with: foreign objects being sucked in.

“We know it [the pre-cooler] can take debris, insects, leaves,” Bond said.

Working with the U.S. military

Bond estimates that the pre-cooler is now at a technology readiness level (TRL) of about 5. NASA and AFRL use a 1-to-9 TRL scale to describe a technology’s stage of development. According to NASA’s TRL descriptions, 5 represents “thorough testing” of a prototype in a “representative environment.”

The AFRL work is being carried out under a Cooperative Research and Development Agreement (CRADA) with Reaction Engines that was announced in January. AFRL officials told Space.com that they are using computers to model SABRE.

“The Air Force research laboratories in the States have carried out some modeling to verify that the SABRE does actually work, that it is a real engine, and so I am hoping they are going to confirm that very soon,” Bond said.

“This is obviously opening doors in the United States, and again, I can’t say a great deal about that, but we have very good dialogue going across the Atlantic,” he added. “In the next couple of years, it’s going to be quite exciting.”

Bond declined to confirm rumors of organized support within the U.S. aerospace community that involves former senior program managers of the U.S. military’s most high-profile defense projects.

Bond sees Skylon as an international project that would include the U.S. and Europe.

“We’re in dialogue with people across Europe in regard to supplying [rocket engine components]. We don’t want to reinvent the wheel; we’d like to be the engine integrator and put it on our test facilities and run it,” he explained.

Milestones approaching

Two SABRE engines are expected to be tested in 2019. “Hopefully, the earlier part of 2019,” Bond said. “I’d like to feel we can test them on Westcott. That is where the rocket propulsion establishment used to be.” (In the 1950s and 1960s, the United Kingdom had its own space program; the nation launched a satellite called Prospero with its last rocket, Black Arrow, in 1971. Westcott is about a one-hour drive from Reaction Engines’ headquarters).

The SABRE development program is expected to cost 360 million British pounds ($600 million at current exchange rates). “We’ve got 80 million [British pounds] of the 360 million lined up. We’re well on our way to that,” Bond said.

Of the 80 million pounds, 60 million is from the U.K. government. As with thecommercial ventures NASA supports, Reaction Engines has to meet milestones to acquire those government funds.

“We have to meet milestones, but those are programmatic issues,” Bond said. “There is nothing contentious about that; it is just a matter of getting the work done to get there. I think of it as an R&D program, and we’ve done the ‘R’ bit, and this part forward is the ‘D’ bit. We’ve spent years making sure the technology actually works.”

In January, this R&D program reached its third phase, which is split into four sections, known as 3A, 3B, 3C and 3D. Sections 3A and 3B are being carried out in cooperation with the European Space Agency (ESA).

Section 3A began in January and will last until April 2015. It involves the engine’s system design, revising the engine’s layout and studying the impact on Skylon’s performance. This work will cost 8 million euros ($10.7 million, or 6.4 million British pounds), half of which will come from the U.K. government and ESA and the other half from Reaction Engines’ private investment.

“This is it for real now; this isn’t studies anymore,” Bond said. Section 3A will continue until spring 2015, and section 3B is due to start in January 2015, he added. “That is the preliminary design phase,.” Bond said.”

Section 3B will last until the end of 2015. During this section, the characteristics of the engine components will be defined and technical specifications produced.

Section 3C, which starts from mid-2015, will see 10 million euros ($13.37 million, or 8 million British pounds) from the U.K. government spent. The section 3C work with suppliers overlaps section 3B. This is because some of the components will get specifications during 3B before other parts of the engine are fully defined. Those detailed components with specifications can then be given to prospective suppliers during the first few months of section 3C.

“In 3C, we start to do detailed design — what the bearings will look like, who is the supplier going to be, that sort of stuff. This is really exciting stuff. We’re starting to pull the real engine together during the course of next year,” Bond said.

He explained that for section 3C, his company will spend “some of the U.K. government money alongside some of our own private investment.” The government money has “enabled us to raise quite a few millions of private investment to go alongside that, and we’re continuing that [fund-raising] activity,” Bond said.

Source

August 19, 2014

Message from a Space Traveller… Far Far in the Future…

Filed under: Cool, Extraterrestrial Life, Life, Religion — bferrari @ 7:01 am

 

I remember when we took our first steps upon the moon. For millennia we had looked upon her as a merciful goddess, who gifted us with light in the darkness and the rule to measure our years. What bounty of life did she hold, we wondered, when we discovered our world was a sphere? Then we invented telescopes, and found her to possess not an alien world of cold white fire, but the rough beauty of the highest, most barren mountains.

Even though our imaginations had failed us, we still sought to visit her, this great beautiful land that had occupied our nights and dreams since the dawn of our species. From swan-pulled boats to great hot-air balloons, we struggled to reach the land that we could never touch. Then came the wars, the terrible wars, and we found ourselves thrust out of our gentle lives. Great new weapons were forged, new realms of science uncovered. And the secret of spaceflight discovered.

When I finally reached her, after travelling for three days aboard my tiny rocket pod, I touched down in one of the great basalt seas that dotted the moon’s surface. And there, I found the first signs of life on the moon; a flag in brilliant colours, a ship much larger and more alien than my own and a bronze plaque bearing the image of a world and an unknown language.

When we tested the dust upon these artifacts, we came to a startling conclusion. They were more than four million years old, the product of a civilisation little more advanced than our own. The world on the plaque was unrecognisable except to paleogeologists, as the state of our continents and seas in the distant past, when our race had swum through primordial seas. Imagine! Some other life had lived and breathed and touched the heavens, and vanished, yet still its creations endured upon the merciful moon.

When we walked the rust-red surface of Geyes, we bore the inscription upon the plaque with us, engraved on our ships. When we sailed the endless skies of Jalbador, we bore the inscription on our atmosuits. When we launched our first interstellar spaceship, she bore the inscription upon her brow and carried the plaque upon her bridge. And when we first made contact, we learned what the inscription said.

“We came in peace, for all mankind.”

August 6, 2014

European space probe makes rendezvous with comet after decade-long chase

Filed under: Comets, Cool, Gadgets, Inner Solar System, Space Ships — bferrari @ 8:55 am
August 6, 2014: An expert watches his screens at the control center of the European Space Agency in Darmstadt, Germany. A mission to land the first space probe on a comet reaches a major milestone when the unmanned Rosetta spacecraft finally catches up with its quarry on Wednesday. (AP Photo/dpa, Boris Roessler)

August 6, 2014: An expert watches his screens at the control center of the European Space Agency in Darmstadt, Germany. A mission to land the first space probe on a comet reaches a major milestone when the unmanned Rosetta spacecraft finally catches up with its quarry on Wednesday. (AP Photo/dpa, Boris Roessler)

The European Space Agency says comet-chasing space probe Rosetta has reached its destination after a journey lasting more than a decade.

Scientists and spectators at ESA’s mission control in Darmstadt, Germany, cheered Wednesday after the spacecraft successfully completed its final thrust to swing alongside comet 67P/Churyumov-Gerasimenko.

ESA chief Jean-Jacques Dordain says the probe’s rendezvous with 67P is an important milestone in Rosetta’s life.

The goal of the mission is to orbit 67P from a distance of about 60 miles and observe the giant ball of dust and ice as it hurtles toward the sun. If all goes according to plan, Rosetta will drop the first ever lander onto a comet in November.

Scientists hope this will help them learn more about the origins of comets, stars and planets.

 

Source

Create a free website or blog at WordPress.com.