SpaceJibe

June 27, 2015

The biggest biotech discovery of the century is about to change medicine forever

Filed under: Cool — bferrari @ 4:02 pm

Jennifer A. Doudna was one of four winning researchers on the panel at the Breakthrough Prize Breakfast & Symposia on November 10, 2014 in Stanford, California.  Read more: https://www.quantamagazine.org/20150206-crispr-dna-editor-bacteria/#ixzz3eIYrzwfJ Jennifer A. Doudna was one of four winning researchers on the panel at the Breakthrough Prize Breakfast & Symposia on November 10, 2014 in Stanford, California. Read more: https://www.quantamagazine.org/20150206-crispr-dna-editor-bacteria/#ixzz3eIYrzwfJ

On a November evening last year, Jennifer Doudna put on a stylish black evening gown and headed to Hangar One, a building at NASA’s Ames Research Center that was constructed in 1932 to house dirigibles.

Under the looming arches of the hangar, Doudna mingled with celebrities like Benedict Cumberbatch, Cameron Diaz and Jon Hamm before receiving the 2015 Breakthrough Prize in life sciences, an award sponsored by Mark Zuckerberg and other tech billionaires.

Doudna, a biochemist at the University of California, Berkeley, and her collaborator, Emmanuelle Charpentier of the Helmholtz Centre for Infection Research in Germany, each received $3 million for their invention of a potentially revolutionary tool for editing DNA known as CRISPR.

Doudna was not a gray-haired emerita being celebrated for work she did back when dirigibles ruled the sky.

It was only in 2012 that Doudna, Charpentier and their colleagues offered the first demonstration of CRISPR’s potential.

They crafted molecules that could enter a microbe and precisely snip its DNA at a location of the researchers’ choosing.

In January 2013, the scientists went one step further: They cut out a particular piece of DNA in human cells and replaced it with another one.

In the same month, separate teams of scientists at Harvard University and the Broad Institute reported similar success with the gene-editing tool.

A scientific stampede commenced, and in just the past two years, researchers have performed hundreds of experiments on CRISPR. Their results hint that the technique may fundamentally change both medicine and agriculture.

Some scientists have repaired defective DNA in mice, for example, curing them of genetic disorders. Plant scientists have used CRISPR to edit genes in crops, raising hopes that they can engineer a better food supply.

Some researchers are trying to rewrite the genomes of elephants, with the ultimate goal of re-creating a woolly mammoth.

Writing last year in the journal Reproductive Biology and Endocrinology, Motoko Araki and Tetsuya Ishii of Hokkaido University in Japan predicted that doctors will be able to use CRISPR to alter the genes of human embryos “in the immediate future.”

Thanks to the speed of CRISPR research, the accolades have come quickly. Last year MIT Technology Review called CRISPR “the biggest biotech discovery of the century.”

The Breakthrough Prize is just one of several prominent awards Doudna has won in recent months for her work on CRISPR; National Public Radio recently reported whispers of a possible Nobel in her future.

Even the pharmaceutical industry, which is often slow to embrace new scientific advances, is rushing to get in on the act. New companies developing CRISPR-based medicine are opening their doors.

In January, the pharmaceutical giant Novartis announced that it would be using Doudna’s CRISPR technology for its research into cancer treatments. It plans to edit the genes of immune cells so that they will attack tumors.

But amid all the black-tie galas and patent filings, it’s easy to overlook the most important fact about CRISPR: Nobody actually invented it.

Doudna and other researchers did not pluck the molecules they use for gene editing from thin air. In fact, they stumbled across the CRISPR molecules in nature.

Microbes have been using them to edit their own DNA for millions of years, and today they continue to do so all over the planet, from the bottom of the sea to the recesses of our own bodies.

We’ve barely begun to understand how CRISPR works in the natural world.

Microbes use it as a sophisticated immune system, allowing them to learn to recognize their enemies. Now scientists are discovering that microbes use CRISPR for other jobs as well.

The natural history of CRISPR poses many questions to scientists, for which they don’t have very good answers yet.

Jennifer Doudna UC Berkeley Biochemistry Molecular biology scientist Breakthrough Prize panelSteve Jennings/Getty ImagesJennifer A. Doudna was one of four winning researchers on the panel at the Breakthrough Prize Breakfast & Symposia on November 10, 2014 in Stanford, California.

But it also holds great promise. Doudna and her colleagues harnessed one type of CRISPR, but scientists are finding a vast menagerie of different types.

Tapping that diversity could lead to more effective gene editing technology, or open the way to applications no one has thought of yet.

“You can imagine that many labs — including our own — are busily looking at other variants and how they work,” Doudna said. “So stay tuned.”

A Repeat Mystery

The scientists who discovered CRISPR had no way of knowing that they had discovered something so revolutionary. They didn’t even understand what they had found. In 1987, Yoshizumi Ishino and colleagues at Osaka University in Japan published the sequence of a gene called iap belonging to the gut microbe E. coli.

To better understand how the gene worked, the scientists also sequenced some of the DNA surrounding it. They hoped to find spots where proteins landed, turning iap on and off. But instead of a switch, the scientists found something incomprehensible.

If you’ve eaten yogurt or cheese, chances are you’ve eaten CRISPR-ized cells.

Near the iap gene lay five identical segments of DNA. DNA is made up of building blocks called bases, and the five segments were each composed of the same 29 bases.

These repeat sequences were separated from each other by 32-base blocks of DNA, called spacers. Unlike the repeat sequences, each of the spacers had a unique sequence.

This peculiar genetic sandwich didn’t look like anything biologists had found before. When the Japanese researchers published their results, they could only shrug. “The biological significance of these sequences is not known,” they wrote.

It was hard to know at the time if the sequences were unique to E. coli, because microbiologists only had crude techniques for deciphering DNA.

But in the 1990s, technological advances allowed them to speed up their sequencing. By the end of the decade, microbiologists could scoop up seawater or soil and quickly sequence much of the DNA in the sample.

This technique — called metagenomics — revealed those strange genetic sandwiches in a staggering number of species of microbes. They became so common that scientists needed a name to talk about them, even if they still didn’t know what the sequences were for.

In 2002, Ruud Jansen of Utrecht University in the Netherlands and colleagues dubbed these sandwiches “clustered regularly interspaced short palindromic repeats” — CRISPR for short.

Jansen’s team noticed something else about CRISPR sequences: They were always accompanied by a collection of genes nearby. They called these genes Cas genes, for CRISPR-associated genes. The genes encoded enzymes that could cut DNA, but no one could say why they did so, or why they always sat next to the CRISPR sequence.

Three years later, three teams of scientists independently noticed something odd about CRISPR spacers. They looked a lot like the DNA of viruses.

“And then the whole thing clicked,” said Eugene Koonin.

At the time, Koonin, an evolutionary biologist at the National Center for Biotechnology Information in Bethesda, Md., had been puzzling over CRISPR and Cas genes for a few years. As soon as he learned of the discovery of bits of virus DNA in CRISPR spacers, he realized that microbes were using CRISPR as a weapon against viruses.

Koonin knew that microbes are not passive victims of virus attacks. They have several lines of defense. Koonin thought that CRISPR and Cas enzymes provide one more. In Koonin’s hypothesis, bacteria use Cas enzymes to grab fragments of viral DNA.

They then insert the virus fragments into their own CRISPR sequences. Later, when another virus comes along, the bacteria can use the CRISPR sequence as a cheat sheet to recognize the invader.

Scientists didn’t know enough about the function of CRISPR and Cas enzymes for Koonin to make a detailed hypothesis. But his thinking was provocative enough for a microbiologist named Rodolphe Barrangou to test it.

To Barrangou, Koonin’s idea was not just fascinating, but potentially a huge deal for his employer at the time, the yogurt maker Danisco.

Danisco depended on bacteria to convert milk into yogurt, and sometimes entire cultures would be lost to outbreaks of bacteria-killing viruses. Now Koonin was suggesting that bacteria could use CRISPR as a weapon against these enemies.

To test Koonin’s hypothesis, Barrangou and his colleagues infected the milk-fermenting microbe Streptococcus thermophilus with two strains of viruses.

The viruses killed many of the bacteria, but some survived. When those resistant bacteria multiplied, their descendants turned out to be resistant too. Some genetic change had occurred.

Barrangou and his colleagues found that the bacteria had stuffed DNA fragments from the two viruses into their spacers. When the scientists chopped out the new spacers, the bacteria lost their resistance.

Barrangou, now an associate professor at North Carolina State University, said that this discovery led many manufacturers to select for customized CRISPR sequences in their cultures, so that the bacteria could withstand virus outbreaks. “If you’ve eaten yogurt or cheese, chances are you’ve eaten CRISPR-ized cells,” he said.

Cut and Paste

As CRISPR started to give up its secrets, Doudna got curious. She had already made a name for herself as an expert on RNA, a single-stranded cousin to DNA.

Originally, scientists had seen RNA’s main job as a messenger. Cells would make a copy of a gene using RNA, and then use that messenger RNA as a template for building a protein. But Doudna and other scientists illuminated many other jobs that RNA can do, such as acting as sensors or controlling the activity of genes.

In 2007, Blake Wiedenheft joined Doudna’s lab as a postdoctoral researcher, eager to study the structure of Cas enzymes to understand how they worked.

Doudna agreed to the plan — not because she thought CRISPR had any practical value, but just because she thought the chemistry might be cool. “You’re not trying to get to a particular goal, except understanding,” she said.

As Wiedenheft, Doudna and their colleagues figured out the structure of Cas enzymes, they began to see how the molecules worked together as a system. When a virus invades a microbe, the host cell grabs a little of the virus’s genetic material, cuts open its own DNA, and inserts the piece of virus DNA into a spacer.

As the CRISPR region fills with virus DNA, it becomes a molecular most-wanted gallery, representing the enemies the microbe has encountered. The microbe can then use this viral DNA to turn Cas enzymes into precision-guided weapons.

The microbe copies the genetic material in each spacer into an RNA molecule. Cas enzymes then take up one of the RNA molecules and cradle it.

Together, the viral RNA and the Cas enzymes drift through the cell. If they encounter genetic material from a virus that matches the CRISPR RNA, the RNA latches on tightly. The Cas enzymes then chop the DNA in two, preventing the virus from replicating.

Danisco depended on bacteria to convert milk into yogurt, and sometimes entire cultures would be lost to outbreaks of bacteria-killing viruses. Now Koonin was suggesting that bacteria could use CRISPR as a weapon against these enemies.

To test Koonin’s hypothesis, Barrangou and his colleagues infected the milk-fermenting microbe Streptococcus thermophilus with two strains of viruses.

The viruses killed many of the bacteria, but some survived. When those resistant bacteria multiplied, their descendants turned out to be resistant too. Some genetic change had occurred.

Barrangou and his colleagues found that the bacteria had stuffed DNA fragments from the two viruses into their spacers. When the scientists chopped out the new spacers, the bacteria lost their resistance.

Barrangou, now an associate professor at North Carolina State University, said that this discovery led many manufacturers to select for customized CRISPR sequences in their cultures, so that the bacteria could withstand virus outbreaks. “If you’ve eaten yogurt or cheese, chances are you’ve eaten CRISPR-ized cells,” he said.

Cut and Paste

As CRISPR started to give up its secrets, Doudna got curious. She had already made a name for herself as an expert on RNA, a single-stranded cousin to DNA.

Originally, scientists had seen RNA’s main job as a messenger. Cells would make a copy of a gene using RNA, and then use that messenger RNA as a template for building a protein. But Doudna and other scientists illuminated many other jobs that RNA can do, such as acting as sensors or controlling the activity of genes.

In 2007, Blake Wiedenheft joined Doudna’s lab as a postdoctoral researcher, eager to study the structure of Cas enzymes to understand how they worked.

Doudna agreed to the plan — not because she thought CRISPR had any practical value, but just because she thought the chemistry might be cool. “You’re not trying to get to a particular goal, except understanding,” she said.

As Wiedenheft, Doudna and their colleagues figured out the structure of Cas enzymes, they began to see how the molecules worked together as a system. When a virus invades a microbe, the host cell grabs a little of the virus’s genetic material, cuts open its own DNA, and inserts the piece of virus DNA into a spacer.

As the CRISPR region fills with virus DNA, it becomes a molecular most-wanted gallery, representing the enemies the microbe has encountered. The microbe can then use this viral DNA to turn Cas enzymes into precision-guided weapons.

The microbe copies the genetic material in each spacer into an RNA molecule. Cas enzymes then take up one of the RNA molecules and cradle it.

Together, the viral RNA and the Cas enzymes drift through the cell. If they encounter genetic material from a virus that matches the CRISPR RNA, the RNA latches on tightly. The Cas enzymes then chop the DNA in two, preventing the virus from replicating.

https://www.quantamagazine.org/20150206-crispr-dna-editor-bacteria/#ixzz3eIZMGVbk

As CRISPR’s biology emerged, it began to make other microbial defenses look downright primitive. Using CRISPR, microbes could, in effect, program their enzymes to seek out any short sequence of DNA and attack it exclusively.

“Once we understood it as a programmable DNA-cutting enzyme, there was an interesting transition,” Doudna said. She and her colleagues realized there might be a very practical use for CRISPR. Doudna recalls thinking, “Oh my gosh, this could be a tool.”

It wasn’t the first time a scientist had borrowed a trick from microbes to build a tool. Some microbes defend themselves from invasion by using molecules known as restriction enzymes. The enzymes chop up any DNA that isn’t protected by molecular shields.

The microbes shield their own genes, and then attack the naked DNA of viruses and other parasites. In the 1970s, molecular biologists figured out how to use restriction enzymes to cut DNA, giving birth to the modern biotechnology industry.

In the decades that followed, genetic engineering improved tremendously, but it couldn’t escape a fundamental shortcoming: Restriction enzymes did not evolve to make precise cuts — only to shred foreign DNA.

As a result, scientists who used restriction enzymes for biotechnology had little control over where their enzymes cut open DNA.

The CRISPR-Cas system, Doudna and her colleagues realized, had already evolved to exert just that sort of control.

To create a DNA-cutting tool, Doudna and her colleagues picked out the CRISPR-Cas system from Streptococcus pyogenes, the bacteria that cause strep throat. It was a system they already understood fairly well, having worked out the function of its main enzyme, called Cas9.

Doudna and her colleagues figured out how to supply Cas9 with an RNA molecule that matched a sequence of DNA they wanted to cut. The RNA molecule then guided Cas9 along the DNA to the target site, and then the enzyme made its incision.

Using two Cas9 enzymes, the scientists could make a pair of snips, chopping out any segment of DNA they wanted. They could then coax a cell to stitch a new gene into the open space.

Doudna and her colleagues thus invented a biological version of find-and-replace — one that could work in virtually any species they chose to work on.

As important as these results were, microbiologists were also grappling with even more profound implications of CRISPR. It showed them that microbes had capabilities no one had imagined before.

Before the discovery of CRISPR, all the defenses that microbes were known to use against viruses were simple, one-size-fits-all strategies. Restriction enzymes, for example, will destroy any piece of unprotected DNA. Scientists refer to this style of defense as innate immunity.

We have innate immunity, too, but on top of that, we also use an entirely different immune system to fight pathogens: one that learns about our enemies.

This so-called adaptive immune system is organized around a special set of immune cells that swallow up pathogens and then present fragments of them, called antigens, to other immune cells. If an immune cell binds tightly to an antigen, the cell multiplies.

The process of division adds some random changes to the cell’s antigen receptor genes. In a few cases, the changes alter the receptor in a way that lets it grab the antigen even more tightly. Immune cells with the improved receptor then multiply even more.

This cycle results in an army of immune cells with receptors that can bind quickly and tightly to a particular type of pathogen, making them into precise assassins. Other immune cells produce antibodies that can also grab onto the antigens and help kill the pathogen.

It takes a few days for the adaptive immune system to learn to recognize the measles virus, for instance, and wipe it out. But once the infection is over, we can hold onto these immunological memories. A few immune cells tailored to measles stay with us for our lifetime, ready to attack again.

CRISPR, microbiologists realized, is also an adaptive immune system. It lets microbes learn the signatures of new viruses and remember them.

And while we need a complex network of different cell types and signals to learn to recognize pathogens, a single-celled microbe has all the equipment necessary to learn the same lesson on its own.

But how did microbes develop these abilities? Ever since microbiologists began discovering CRISPR-Cas systems in different species, Koonin and his colleagues have been reconstructing the systems’ evolution.

CRISPR-Cas systems use a huge number of different enzymes, but all of them have one enzyme in common, called Cas1. The job of this universal enzyme is to grab incoming virus DNA and insert it in CRISPR spacers. Recently, Koonin and his colleagues discovered what may be the origin of Cas1 enzymes.

Along with their own genes, microbes carry stretches of DNA called mobile elements that act like parasites. The mobile elements contain genes for enzymes that exist solely to make new copies of their own DNA, cut open their host’s genome, and insert the new copy.

READ the rest of the story here.

June 19, 2015

Version 0.1 super-stars built the universe – and they lived all the way over there

Filed under: Big Bang, Cool, Cosmology — bferrari @ 3:00 pm
Super-bright galaxy CR7 spotted by 'scopes

Super-bright galaxy CR7 spotted by ‘scopes

Pic Astronomers have recorded the brightest galaxy yet seen in the universe. It was formed 800 million years after the Big Bang, and has evidence of an until-now theoretical type of star.

The galaxy, dubbed Cosmos Redshift 7 aka CR7, is three times brighter than anything astronomers have seen so far, but the distances involved mean that it took the combined efforts of the Hubble Space Telescope, and the Earth-bound Keck Observatory, the ESO Very Large Telescope, and Japanese-run Subaru Telescope, to spot it.

But what’s inside CR7 is what’s really excited scientists. Research accepted for publication in The Astrophysics Journal claims the galaxy contains a type of early star that has long been hypothesized but never seen: a Population III star.

“It doesn’t really get any more exciting than this,” said David Sobral from the Institute of Astrophysics and Space Sciences.

“The discovery challenged our expectations from the start as we didn’t expect to find such a bright galaxy. Then, by unveiling the nature of CR7 piece by piece, we understood that not only had we found by far the most luminous distant galaxy, but also started to realize that it had every single characteristic expected of Population III stars.”

Population I stars are all around us, indeed the Sun that powers our planet is one. They contain a significant amount of complex metals and chemicals formed by nucleosynthesis in the hearts of other stars long since gone nova. Population II stars are similar, but contain much less metal.

In the 1970s, scientists predicted the existence of Population III stars, formed in the very earliest stages of the universe. These would be built almost entirely from hydrogen and helium, with maybe trace amounts of lithium and beryllium.

Such stars would be enormous – thousands of times larger than our Sun – and would be much brighter than most other stars, and last a comparatively brief few million years before burning out. CR7 looks to have a cluster of such stars lighting up its core, with spectrometers finding nothing heavier than helium emanating from the galaxy.

“I have always wondered where we come from,” said Jorryt Matthee, second author of the paper.

“Even as a child I wanted to know where the elements come from: the calcium in my bones, the carbon in my muscles, the iron in my blood. I found out that these were first formed at the very beginning of the Universe, by the first generation of stars. With this discovery, remarkably, we are starting to actually see such objects for the first time.”

Source

May 17, 2015

NASA says EmDrive does work and it may have also created a Star Trek warp drive

Filed under: Cool, Gadgets — bferrari @ 8:07 pm

Nasa has been testing a highly controversial electromagnetic space propulsion technology called EmDrive and has found evidence that it may indeed work, and along the way, might even have made a sci-fi concept possible.

The EmDrive is a technology that could make it much cheaper to launch satellites into space and could be key to solving the energy crisis, if solar power could be harnessed off the satellites and sent back to Earth.

It was thought up and developed by a British scientist called Roger Shawyer, who spent years having his technology ridiculed by the international space community even though Boeing licensed it and the UK government was satisfied it worked.

Update: EmDrive and ‘warp drive’ are two different things – Nasa’s still working on EmDrive

Read More: Roger Shawyer’s exclusive interview with IBTimes UK in response to news of Nasa’s experiments with EmDrive

Nasa has been testing the technology for a while and it confirmed on 29 April that researchers at the Johnson Space Center have successfully tested an electromagnetic propulsion drive in a vacuum, and although it did not seem possible, the technology actually works.

“Thrust measurements of the EmDrive defy classical physics’ expectations that such a closed [microwave] cavity should be unusable for space propulsion because of the law of conservation of momentum,” Nasa’s José Rodal, Jeremiah Mullikin and Noel Munson wrote in a Nasa Spaceflight blog.

What is EmDrive?

EmDrive is based on the theory of special relativity that it is possible to convert electrical energy into thrust without the need to expel any form of repellent.

Shawyer’s critics say according to the law of conservation of momentum, his theory cannot work as in order for a thruster to be propelled forwards, something must be pushed out of the back of it in the opposite direction.

However, EmDrive does preserve the conservation of momentum and energy – to put it simply, electricity converts into microwaves within the cavity that push against the inside of the device, causing the thruster to accelerate in the opposite direction.

Shawyer proved that if you had a 100kg spacecraft, the thrust would be in a clockwise direction and the spacecraft would then accelerate in an anti-clockwise direction.

NASA says it works when tested in a vacuum

The researchers explain that the reason why Shawyer’s EmDrive models and EmDrive experiments carried out by Chinese researchers had been criticised in the past was because none of the tests had been carried out in a vacuum.

Physics says particles in the quantum vacuum cannot be ionised, so therefore you cannot push against it, but Nasa says Shawyer’s theory does indeed work.

“Nasa has successfully tested their EmDrive in a hard vacuum – the first time any organisation has reported such a successful test. To this end, Nasa Eagleworks has now nullified the prevailing hypothesis that thrust measurements were due to thermal convection,” the researchers wrote.

Nasa says its researchers joined forces with a large community of enthusiasts, engineers, and scientists on several continents to discuss EmDrive theories on the NasaSpaceflight.com EmDrive forum, and “despite considerable effort within the NasaSpaceflight.com forum to dismiss the reported thrust as an artefact, the EmDrive results have yet to be falsified”.

At least now Shawyer’s work is being validated and he continues to work on a souped-up second generation version of the EmDrive that uses super conductors and an asymmetrical cavity to increase the thrust by up to five orders of magnitude.

In an interview with IBTimes UK in August 2014, Shawyer said: “There was an element of not wanting to disrupt the industry, but also a total ignorance in the laws of physics. They did make life difficult for me for a while.

“”The space industry doesn’t want to know about it as it’s very disruptive. If the customer will spend hundreds of millions of dollars on launching a satellite, why would you want to make something that could do it cheaper?

“This technology is a quantum leap – it would enable vertical take-off and landing for airplanes, it’s quiet and it uses liquid hydrogen as a fuel, so it’s green too.”

Star Trek warp drive might also now be possible

Apart from the excitement over EmDrive possibly being a real thing, internet users also noticed Nasa could possibly have accidentally invented the warp drive – a faster-than-light propulsion system that enables spacecraft to travel at speeds that are greatly faster than light in sci-fi movies such as Star Trek.

Nasa researchers posted on the Nasa Spaceflight forum that when lasers were fired into the EmDrive’s resonance chamber, some of the laser beams had travelled faster than the speed of light, which would mean the EmDrive could have produced a warp bubble.

A post by another user analysing the EmDrive experiment said “the math behind the warp bubble apparently matches the interference pattern found in the EmDrive”.

May 6, 2015

Astronomers find galaxy 13.1 billion light-years away

Filed under: Big Bang, Cool, Cosmology — bferrari @ 5:41 am
This handout photo provided by NASA and the European Space Agency, taken in 2013 with NASA's Hubble space telescope, shows a galaxy from the farthest distance recorded: 13.1 billion light-years. It is from a time just 670 million years after the Big Bang. (AP)

This handout photo provided by NASA and the European Space Agency, taken in 2013 with NASA’s Hubble space telescope, shows a galaxy from the farthest distance recorded: 13.1 billion light-years. It is from a time just 670 million years after the Big Bang. (AP)

Astronomers have spotted a baby blue galaxy that is farther away in space and time than any other galaxy ever seen. It is among the universe’s first generation of galaxies, from approximately 13.1 billion years ago.

Yale and University of California Santa Cruz scientists used three telescopes to spot and calculate the age of the blurry infant galaxy. By measuring how the light has shifted, they determined the galaxy, named EGS-zs8-1, is from about 670 million years after the Big Bang.

Because when astronomers look farther away from Earth, they are looking back further in time, this is both the most distant galaxy and the furthest back in time. It is 13.1 billion light-years away, in the constellation Bootes. A light-year is 5.8 trillion miles.

This beats the old record by about 30 million years, which isn’t much, but was difficult to achieve, said astronomer Garth Illingworth of the University of California Santa Cruz, who co-authored the paper in Astrophysical Journal Letters announcing the discovery.

The photo they took was from a crucial time in the early universe, after what was called the Dark Ages, when galaxies and stars were just starting to form and the universe was only one five hundredth the mass it is now, Illingworth said.

This galaxy – larger than most of the others from that time, which is why astronomers using the most powerful telescopes can see it – was probably only about 100 million years also, but was quite busy, Illingworth said.

“We’re looking here at an infant that’s growing at a great rate,” he said. The galaxy was giving birth to stars at 80 times the rate our Milky Way does now. “These objects would like nothing like our sun. It would look much, much bluer.”

Yale astronomer Pascal Oesch was looking through Hubble Space Telescope images in 2013 when he saw a bright object. He then used the Spitzer space telescope to see it again. The hardest work was confirming the age and distance using the ground-based Keck Observatory in Hawaii to separate light waves.

The Associated Press contributed to this report.

Source

April 28, 2015

Biggest structure ever found is a really cold hole

Filed under: Big Bang, Cool, Cosmology — bferrari @ 8:19 pm
Largest Structure Ever Found is a Really Cold Hole. Image from the Planck telescope shows the Cold Spot, circled.  (ESA and the Planck Collaboration)

Largest Structure Ever Found is a Really Cold Hole. Image from the Planck telescope shows the Cold Spot, circled. (ESA and the Planck Collaboration)

Largest Structure Ever Found is a Really Cold Hole. Image from the Planck telescope shows the Cold Spot, circled. (ESA and the Planck Collaboration)

Researchers using NASA’s Wide-Field Infrared Survey Explorer and a telescope in Maui have discovered what they are calling the “largest individual structure ever identified by humanity,” reports the Royal Astronomical Society.

So large, in fact, that the only way to measure its size is in light-years—1.8 billion of them. The so-called supervoid is about 3 billion light-years away, a distance astrophysicists call “close” in the scheme of things.

The researchers were on the hunt for a supervoid in the direction of what’s known as the cosmic microwave background (CMB) Cold Spot, they report in the Society’s Monthly Notices.

First discovered in 2004, the Cold Spot has led some to question our understanding of the Big Bang theory, which doesn’t account for such large, cold spaces.

The latest study suggests that this supervoid—which isn’t empty but rather less dense, essentially “missing” 10,000 galaxies, reports the Guardian—found in the middle of the Cold Spot drains energy from light that travels through it.

Still, the mystery continues, as this drain accounts for only 10% of the Cold Spot’s extreme temperature dip. “It’s like the Everest of voids—there has to be one that’s bigger than the rest,” says one researcher.

“But it doesn’t explain the whole Cold Spot, which we’re still in the dark about.” Experts say “exotic physics” that we’re not familiar with could be at play.

Still, the discovery does provide evidence “for the existence of dark energy,” an outside researcher says. (How close to absolute zero is the “coldest place in the universe”?)

This article originally appeared on Newser: Largest Structure Ever Found Is a Really Cold Hole

April 27, 2015

Mars One Finalist Explains Exactly How It‘s Ripping Off Supporters

Filed under: Government Policies, Inner Solar System, Life, Mars — bferrari @ 7:53 pm

Mars One Finalist Explains Exactly How It‘s Ripping Off Supporters

No money, no process, no explanation: An insider speaks out on the hopelessly flawed scheme.
By Elmo Keep

When Joseph first signed up with Mars One — the media-hyped, one-way mission to colonize the red planet being floated by a Dutch non-profit — he didn’t think much of it. The former NASA researcher said he never really took the application seriously; he was just putting his hat in the ring mostly out of curiosity, and with the hope of bringing public attention to space science.

But eventually Joseph — who is actually Dr. Joseph Roche, an assistant professor at Trinity College’s School of Education in Dublin, with a Ph.D. in physics and astrophysics — found himself on the group’s shortlist of 100 candidates all willing to undertake the theoretical journey. And that’s when he started talking to me about the big problems he was seeing with Mars One.

It was difficult for him to break his silence, but he was spurred into speaking out by the uncritical news coverage. Many basic assumptions about the project remain unchallenged. Most egregiously, many media outlets continue to report that Mars One received applications from 200,000 people who would be happy to die on another planet — when the number it actually received was 2,761.

As Roche observed the process from an insider’s perspective, his concerns increased. Chief among them: that some leading contenders for the missionhad bought their way into that position, and are being encouraged to “donate” any appearance fees back to Mars One — which seemed to him very strange for an outfit that needs billions of dollars to complete its objective.

“When you join the ‘Mars One Community,’ which happens automatically if you applied as a candidate, they start giving you points,” Roche explained to me in an email. “You get points for getting through each round of the selection process (but just an arbitrary number of points, not anything to do with ranking), and then the only way to get more points is to buy merchandise from Mars One or to donate money to them.”

“Community members” can redeem points by purchasing merchandise like T-shirts, hoodies, and posters, as well as through gifts and donations: The group also solicits larger investment from its supporters. Others have been encouraged to help the group make financial gains on flurries of media interest. In February, finalists received a list of “tips and tricks” for dealing with press requests, which included this: “If you are offered payment for an interview then feel free to accept it. We do kindly ask for you to donate 75% of your profit to Mars One.”

The result, said Roche, is that high-profile prospects — including those in a list of “Top 10 hopefuls” published last month in The Guardian— are, in fact, simply the people who have generated the most money for Mars One. A spokeswoman confirmed by email that the positions were “based on the supporter points that our community can earn,” but said that “this number of points is unrelated to our selection process.”

As Roche also told me, that secretive selection process is hopelessly, and dangerously, flawed.

“I have not met anyone from Mars One in person,” he said. “Initially they’d said there were going to be regional interviews… we would travel there, we’d be interviewed, we’d be tested over several days, and in my mind that sounded at least like something that approached a legitimate astronaut selection process.

“But then they made us sign a non-disclosure agreement if we wanted to be interviewed, and then all of a sudden it changed from being a proper regional interview over several days to being a 10-minute Skype call.”

Mars One’s selection process to date has required candidates to complete a questionnaire, upload a video to the project’s website, and get a medical examination with each candidate’s local doctor (which they had to arrange themselves). Roche said he then had a short Skype conversation with Mars One’s chief medical officer, Norbert Kraft, during which he was quizzed with questions from literature about Mars and the mission that Mars One had provided to all the applicants. No rigorous psychological or psychometric testing was part of the appraisal. Candidates were given a month to rote-learn the material before the interview.

Mars One’s testing methods fall well short of NASA’s stringent astronaut corps requirements — not least in the case of anyone who would be training to be the mission commander, the individual who would actually pilot a theoretical craft to Mars. Commanders at NASA are required to have logged 1,000 jet aircraft flight hours to even be considered as training candidates for spaceflight.

Applicants were told they did not have permission to record the interview or to take any notes. Today, Roche said, he has still never had an in-person meeting with anyone associated with Mars One, and he is not aware that any candidate has ever been interviewed in person to assess their suitability to be sent one-way, forever, on a deep-space mission.

“That means all the info they have collected on me is a crap video I made, an application form that I filled out with mostly one-word answers… and then a 10-minute Skype interview,” Roche said. “That is just not enough info to make a judgment on someone about anything.”

The story continues here…

View story at Medium.com

This mind-blowing new 3-D printing technique is inspired by ‘Terminator 2​’

Filed under: Cool, Gadgets — bferrari @ 7:37 pm

The Continuous Liquid Interface Production (CLIP) technology is shown at 7x speed. (Carbon3D, Inc.)

In an iconic scene in the movie “Terminator 2,” the robotic villain T-1000 rises fully formed from a puddle of metallic goo. The newest innovation in 3-D printing looks pretty similar, and that’s no mistake: Its creators were inspired by that very scene.

The company Carbon3D came out of two years of stealth mode Monday night with a simultaneous TED Talk and Science paper publication. Their new tech, which they say could be used in industrial applications within the next year, makes coveted 3-D printers the likes of those sold by MakerBotlook like child’s play.

[Coming soon: 3-D printed mud houses for impoverished countries]

“We think that popular 3-D printing is actually misnamed — it’s really just 2-D printing over and over again,” said Joseph DeSimone, a professor of chemistry at University of North Carolina and North Carolina State as well as one of Carbon3D’s co-founders. “The strides in that area have mostly been driven by mechanical engineers figuring our how to make things layer by layer to precisely create an object. We’re two chemists and a physicist, so we came in with a different perspective.”

Just as the evil T-1000 rises from its puddle of metal alloys, objects created by the new printer seem to ooze into existence from the ether. They come out fast, too: 25 to 100 times faster than anything on the market now, according to the study published in Science.

This 10x speed video shows a 3D model of the Eiffel Tower emerging from a resin pool. The model was created using the Continuous Liquid Interface Production (CLIP) methodology. (Carbon3D, Inc.)

DeSimone and his colleagues call their new process “continuous liquid interface production technology,” or CLIP.

CLIP places a pool of resin over a digital light projection system. A special window between the resin and light allows both light and oxygen to travel through (much like a contact lens, DeSimone explained).

To create an object, CLIP projects specific bursts of light and oxygen. Light hardens the resin, and oxygen keeps it from hardening. By controlling light and oxygen exposure in tandem, intricate shapes and latices can be made in one piece instead of the many layers of material that usually make up a 3-D printed object.

Those layers are defects, keeping the object from being a smooth surface. To minimize them, designers have to spend even longer printing the objects out.

“These hurdles mean that 3-D printing can be amazing for making prototypes, but just not as good for creating a commercial product in a lot of applications,” said Carbon3D’s chief marketing officer Rob Schoeben. “That’s what we’re most interested in changing.”

[5 amazing ways 3-D-printed food will change the way we eat]

Watching CLIP in action is impressive, and so are the objects it’s already produced. DeSimone hopes that the technique’s knack for making small, smooth objects will help make breakthroughs in the tiny sensors we rely on for smartphones and fitness bands, as well as in making microneedles and other drug delivery systems.

DeSimone has always turned his students into entrepreneurs in the lab, but Carbon3D is the first company he left the classroom to develop. “This is a field that’s like breathing for me,” he said, “and we have an opportunity to make a big impact.”

His co-founder and fellow UNC professor Edward Samulski agreed, saying that the basic principle — keeping a polymer from forming with oxygen — is something  they frequently encountered in the classroom.

“We all teach this in our undergraduate courses,” Samulski said. “It illustrates what 1937 Nobel Laureate Albert Szent-Gyorgyi said: ‘Discovery consists of seeing what everybody has seen and thinking what nobody has thought.’ ”

More reading: 

Meet Derby, the dog who runs on 3-D printed legs

3-D printers could squirt out squid-inspired plastics

NASA just ‘emailed’ a wrench to space for the first time

Source

January 28, 2015

‘Super Saturn’ with rings 200 times as large

Filed under: Cool, Outer Solar System — bferrari @ 12:49 pm
Illustration by artist Ron Miller of the gigantic ring system around J1407b.

Illustration by artist Ron Miller of the gigantic ring system around J1407b.

In 1610, after he built his telescope, Galileo Galilei first spotted enormous Saturn’s gigantic rings. More than 400 years later, astronomers have in a sense dwarfed that discovery with a similar first.

Using powerful optics, they have found a much larger planet-like body, J1407b, with rings 200 times the size of Saturn’s, U.S. and Dutch astronomers said.

It lies some 400 light-years away from Earth.

For decades, scientists have believed that many moons around large planets formed out of such ring systems. But this is the first one astronomers have observed aside from Saturn’s, they said.

It was discovered in 2012, but a detailed analysis of its data was recently completed and published.

Dominating the sky

How this new Super Saturn would look in our own sky.

How this new Super Saturn would look in our own sky.

If J1407b were in our solar system, it would dominate Earth’s nightly sky.

“If we could replace Saturn’s rings with the rings around J1407b, they would be easily visible at night and be many times larger than the full moon,” said Matthew Kenworthy from the Netherlands’ Leiden Observatory.

Unlike Galileo peering a relatively short distance through his simple telescope, today’s astronomers can’t eyeball the rings hundreds of light-years away.

But using two very powerful optical devices with eight cameras each, they can observe the effect the rings have as they pass across nearby star J1407 — written without a ‘b’ at the end.

It is similar to our sun. The rings of planet J1407b eclipse its light.

56-day eclipse

With the enormous size of the rings, the eclipse the astronomers observed lasted 56 days.

But the star did not go completely dark for nearly two months. Some of J1407b’s 30 rings are denser, blocking more light, and some of them are less dense, letting more light through.

And there are gaps between the rings, leading the scientists to theorize that “exomoons” have formed and cut clean orbits through the debris, like the moons around Saturn.

Our own solar system’s ringed giant has at least 60 moons, according to NASA.

Bigger than a planet

Like its system of rings, planet J1407b is also much larger than Saturn, said astrophysicist Eric Mamajek, whose team at the University of Rochester discovered the object. “You could think of it as kind of a super Saturn.”

It is called a brown dwarf, a size classification somewhere between a planet and a star, according to the California Institute of Technology.

Brown dwarfs are hot but don’t burst into nuclear fusion the way stars do, so they don’t give off light.

The scientists are calling on amateur astronomers to keep an eye on star J1407 in hopes they may observe the rings eclipsing it again and report the results to the American Association of Variable Star Observers, which collects astronomical data on “stars that change in brightness.”

And astronomers will also search for more such ringed systems.

January 11, 2015

NASA stuns with new image of ‘Pillars of Creation’

Filed under: Cool, Cosmology, Exoplanets, Gadgets — bferrari @ 8:11 pm

New “Pillars of Creation” Hubble photo. (NASA)

(CNN)NASA has come out with a new image that could become one of its most iconic ever.

The Hubble Space Telescope revisited the so-called “Pillars of Creation,” which the space agency describes as “three giant columns of cold gas bathed in the scorching ultraviolet light from a cluster of young, massive stars in a small region of the Eagle Nebula, or M16.”

The previous photo of these pillars, taken in 1995, went on to stand out from all the rest of NASA’s space images, the agency said. “The Hubble image is so popular that it has appeared in movies and television shows, on T-shirts and pillows, and even on a postage stamp.”

The old and new images, side by side

 The old and new images, side by side

In celebration of the telescope’s upcoming 25th anniversary in April, Hubble returned to the pillars — and this time with the latest high-definition tools.

The new sharper and wider image was taken “in near-infrared light, as well as visible light,” NASA said. “The infrared view transforms the pillars into eerie, wispy silhouettes seen against a background of myriad stars. That’s because the infrared light penetrates much of the gas and dust, except for the densest regions of the pillars. Newborn stars can be seen hidden away inside the pillars.”

In 1995, the captured image gave insight into star formation. “Nebulous star-forming regions like M16 are the interstellar neon signs that say, ‘We just made a bunch of massive stars here,'” said Paul Scowen of Arizona State University, who helped lead the original observations, in a post on NASA’s website.

The new image “hints” that these columns “are also pillars of destruction,” NASA said.

“The ghostly bluish haze around the dense edges of the pillars is material getting heated up and evaporating away into space,” said Scowen. “We have caught these pillars at a very unique and short-lived moment in their evolution.”

December 31, 2014

What the view from earth would be like if earth had rings like Saturn

Filed under: Cool, Earth, Saturn — bferrari @ 5:22 pm

Older Posts »

The WordPress Classic Theme. Blog at WordPress.com.

Follow

Get every new post delivered to your Inbox.

Join 185 other followers