SpaceJibe

February 11, 2016

Scientists find evidence of gravitational waves predicted by Einstein

Filed under: Big Bang, Black Holes, Cool, Cosmology, Gamma Ray Bursts — bferrari @ 11:54 am
File image - An image from a simulation showing how matter might be moved around in the extreme environment around a black hole. (Özel/Chan) (Özel/Chan)

File image – An image from a simulation showing how matter might be moved around in the extreme environment around a black hole. (Özel/Chan) (Özel/Chan)

After decades of searching, scientists announced Thursday that they have detected gravitational waves which are ripples in the fabric of space-time that were predicted by Einstein.

 

An international team of astrophysicist said that they detected the waves from the distant crash of two black holes, using a $1.1 billion instrument. The Ligo Collaboration was behind the discovery and it has been accepted for publication in the journal Physical Review Letters.

Related: Meteorite probably didn’t kill man in India, NASA says

“We have detected gravitational waves,” Caltech’s David H. Reitze, executive director of the LIGO Laboratory, told journalists at a news conference in Washington DC.

The news, according to the Associated Press, is being compared by at least one theorist to Galileo taking up a telescope and looking at the planets and the biggest discovery since the discovery of the Higgs particle. It has stunned the world of physics and astronomy, prompting scientists to say it the beginning of a new era in physics that could lead to scores more astrophysical discoveries and the exploration of the warped side of the universe.

“Our observation of gravitational waves accomplishes an ambitious goal set out over five decades ago to directly detect this elusive phenomenon and better understand the universe, and, fittingly, fulfills Einstein’s legacy on the 100th anniversary of his general theory of relativity,” Reitze said in a statement.

Related: Hundreds of hidden galaxies glimpsed behind Milky Way

The discovery confirms a major prediction of Albert Einstein’s 1915 general theory of relativity. Gravitation waves carry information about their dramatic origins and about the nature of gravity that cannot be obtained from elsewhere.

Not only have they fascinated by scientist by found their way into pop culture – namely through movies such as “Back To The Future,” where the space-time continuum was used a medium for the DeLorean time machine to go back in time. It also featured in the “Terminator” series.

Their existence was first demonstrated in the 1970s and 1980s by Joseph Taylor, Jr., and colleagues. In 1974, Taylor and Russell Hulse discovered a binary system composed of a pulsar in orbit around a neutron star. Taylor and Joel M. Weisberg in 1982 found that the orbit of the pulsar was slowly shrinking over time because of the release of energy in the form of gravitational waves. For discovering the pulsar and showing that it would make possible this particular gravitational wave measurement, Hulse and Taylor were awarded the 1993 Nobel Prize in Physics.

Related: White House proposes $19 billion NASA budget

In the latest breakthrough, the gravitational waves were detected on Sept. 14, 2015 by both of the twin Laser Interferometer Gravitational-wave Observatory (LIGO) detectors, located in Livingston, Louisiana, and Hanford, Washington.

Based on the observed signals, LIGO scientists estimate that the black holes for this event were about 29 and 36 times the mass of the sun, and the event took place 1.3 billion years ago. About three times the mass of the Sun was converted into gravitational waves in a fraction of a second — with a peak power output about 50 times that of the whole visible universe.

By looking at the time of arrival of the signals — the detector in Livingston recorded the event 7 milliseconds before the detector in Hanford — scientists can say that the source was located in the Southern Hemisphere.

Related: New star puts on a show in stunning image

According to general relativity, a pair of black holes orbiting around each other lose energy through the emission of gravitational waves, causing them to gradually approach each other over billions of years, and then much more quickly in the final minutes. In a final fraction of a second, the two black holes collide and form one massive black hole. A portion of their combined mass is converted to energy, according to Einstein’s formula E=mc2, and this energy is emitted as a final strong burst of gravitational waves.

These are the gravitational waves that LIGO observed.

“With this discovery, we humans are embarking on a marvelous new quest: the quest to explore the warped side of the universe — objects and phenomena that are made from warped spacetime. Colliding black holes and gravitational waves are our first beautiful examples,” Caltech’s Kip Thorne said.

 

Source

February 1, 2016

Surprise! Monster Black Hole Found in Dwarf Galaxy

Filed under: Big Bang, Black Holes, Cool — bferrari @ 11:10 am

Size doesn’t matter…

This image shows a huge galaxy, M60, with the small dwarf galaxy that is expected to eventually merge with it. (NASA/Space Telescope Science Institute/European Space Agency)

This image shows a huge galaxy, M60, with the small dwarf galaxy that is expected to eventually merge with it. (NASA/Space Telescope Science Institute/European Space Agency)

Astronomers have just discovered the smallest known galaxy that harbors a huge, supermassive black hole at its core.

The relatively nearby dwarf galaxy may house a supermassive black hole at its heart equal in mass to about 21 million suns. The discovery suggests that supermassive black holes may be far more common than previously thought.

A supermassive black hole millions to billions of times the mass of the sun lies at the heart of nearly every large galaxy like the Milky Way. These monstrously huge black holes have existed since the infancy of the universe, some 800 million years or so after the Big Bang. Scientists are uncertain whether dwarf galaxies might also harbor supermassive black holes. [Watch a Space.com video about the new dwarf galaxy finding]

“Dwarf galaxies usually refer to any galaxy less than roughly one-fiftieth the brightness of the Milky Way,” said lead study author Anil Seth, an astronomer at the University of Utah in Salt Lake City. These galaxies span only several hundreds to thousands of light-years across, much smaller than the Milky Way’s 100,000-light-year diameter, and they “are much more abundant than galaxies like the Milky Way,” Seth said.

The researchers investigated a rarer kind of dwarf galaxy known as an ultra-compact dwarf galaxy; such galaxies are among the densest collections of stars in the universe. “These are found primarily in galaxy clusters, the cities of the universe,” Seth told Space.com.

This is an illustration of the supermassive black hole located in the middle of the very dense galaxy M60-UCD1. It weighs as much as 21 million times the mass of our Sun. Lying about 50 million light-years away, M60-UCD1 is a tiny galaxy with a diameter of 300 light-years — just 1/500th of the diameter of the Milky Way! Despite its size it is pretty crowded, containing some 140 million stars. Because no light can escape from the black hole, it appears simply in silhouette against the starry background. The black hole’s intense gravitational field warps the light of the background stars to form ring-like images just outside the dark edges of the black hole’s event horizon. Combined observations by the NASA/ESA Hubble Space Telescope and NASA’s Gemini North telescope determined the presence of the black hole inside M60-UCD1.

This is an illustration of the supermassive black hole located in the middle of the very dense galaxy M60-UCD1. It weighs as much as 21 million times the mass of our Sun. Lying about 50 million light-years away, M60-UCD1 is a tiny galaxy with a diameter of 300 light-years — just 1/500th of the diameter of the Milky Way! Despite its size it is pretty crowded, containing some 140 million stars. Because no light can escape from the black hole, it appears simply in silhouette against the starry background. The black hole’s intense gravitational field warps the light of the background stars to form ring-like images just outside the dark edges of the black hole’s event horizon. (Combined observations by the NASA/ESA Hubble Space Telescope and NASA’s Gemini North telescope determined the presence of the black hole inside M60-UCD1.)

Now, Seth and his colleagues have discovered that an ultra-compact dwarf galaxy may possess a supermassive black hole, which would make it the smallest galaxy known to contain such a giant.

The astronomers investigated M60-UCD1, the brightest ultra-compact dwarf galaxy currently known, using the Gemini North 8-meter optical-and-infrared telescope on Hawaii’s Mauna Kea volcano and NASA’s Hubble Space Telescope. M60-UCD1 lies about 54 million light-years away from Earth. The dwarf galaxy orbits M60, one of the largest galaxies near the Milky Way, at a distance of only about 22,000 light-years from the larger galaxy’s center, “closer than the sun is to the center of the Milky Way,” Seth said.

The scientists calculated the size of the supermassive black hole that may lurk inside M60-UCD1 by analyzing the motions of the stars in that galaxy, which helped the researchers deduce the amount of mass needed to exert the gravitational field seen pulling on those stars. For instance, the stars at the center of M60-UCD1 zip at speeds of about 230,000 mph (370,000 km/h), much faster than stars would be expected to move in the absence of such a black hole.

The supermassive black hole at the core of the Milky Way has a mass of about 4 million suns, taking up less than 0.01 percent of the galaxy’s estimated total mass, which is about 50 billion suns. In comparison, the supermassive black hole that may lie in the core of M60-UCD1 appears five times larger than the one in the Milky Way, and also seems to make up about 15 percent of the dwarf galaxy’s mass, which is about 140 million suns.

“That is pretty amazing, given that the Milky Way is 500 times larger and more than 1,000 times heavier than the dwarf galaxy M60-UCD1,” Seth said in a statement.

Astronomers have debated the nature of ultra-compact dwarf galaxies for years — whether they were extremely massive clusters of stars that were all born together, or whether they were the centers or nuclei of large galaxies that had their outer layers stripped away during collisions with other galaxies. These new findings hint that ultra-compact dwarf galaxies are the stripped nuclei of larger galaxies, because star clusters do not host supermassive black holes.

The researchers suggest M60-UCD1 was once a very large galaxy, with maybe 10 billion stars, “but then it passed very close to the center of an even larger galaxy, M60, and in that process, all the stars and dark matter in the outer part of the galaxy got torn away and became part of M60,” Seth said in a statement. “That was maybe as much as 10 billion years ago. We don’t know.”

Eventually, M60-UCD1 “may merge with the center of M60, which has a monster black hole in it, with 4.5 billion solar masses — more than 1,000 times bigger than the supermassive black hole in our galaxy,” Seth said in a statement. “When that happens, the black hole we found in M60-UCD1 will merge with that monster black hole.”

The astronomers suggest the way stars move in many other ultra-compact dwarf galaxies hints that they may host supermassive black holes, as well. All in all, the scientists suggest that ultra-compact dwarf galaxies could double the number of supermassive black holes known in the nearby regions of the universe. The researchers are participating in ongoing projects that may provide conclusive evidence for supermassive black holes in four other ultra-compact dwarfs.

The scientists detailed their findings in the Sept. 18 issue of the journal Nature.

Source

 

 

 

Monster Galaxy Cluster Is Biggest Ever in the Early Universe

Filed under: Big Bang, Black Holes, Cool — bferrari @ 10:54 am
This image of the massive galactic cluster IDCS 1426 combines data taken by three major NASA telescopes. The off-center core of X-rays is shown in blue-white near the middle of the cluster, and was captured by Chandra. Visible light from the Hubble Space Telescope is green, and infrared light from Spitzer is shown in red.

This image of the massive galactic cluster IDCS 1426 combines data taken by three major NASA telescopes. The off-center core of X-rays is shown in blue-white near the middle of the cluster, and was captured by Chandra. Visible light from the Hubble Space Telescope is green, and infrared light from Spitzer is shown in red. (NASA, ESA, and M. Brodwin (University of Missouri))

KISSIMMEE, Fla. ─ The most massive collection of galaxies in the early universe has been spotted. Although not the largest collection of galaxies ever found, it holds the record as the largest group in the early universe, appearing surprisingly old for the time.

“Of all the structures we’ve ever seen, this is the most massive in the first 4 billion years of the universe,” astronomer Mark Brodwin, of the University of Missouri at Kansas City, said at a news conference unveiling the discovery here at the 47th annual meeting of the American Astronomical Society. Brodwin led the team that identified the evolved ancient galaxy cluster.

“It should be consistent with the largest cluster in the observable universe.” [The History and Structure of the Universe in Images]

Galaxy clusters are collections of galaxies that formed once stars and individual galaxies had been built. Gravity binds hundreds of thousands of galaxies together in collections so large, they can distort the fabric of space-time. According to present understanding, the massive objects should take billions of years to form.

In 2012, scientists used NASA’s Spitzer Space Telescope to measure the galactic cluster IDCS 1426, which lies approximately 10 billion light-years from Earth. Because light takes a full year to travel the distance of 1 light-year, that means astronomers are able to study the cluster as it appeared when the universe was only 3.8 billon years old. [Related: How Old Is the Universe?]

Initial estimates suggested that IDCS 1426 contained an enormous mass at a significant distance, but were not conclusive. Brodwin and his colleagues decided to use NASA’s Hubble Space Telescope, Keck Observatory and Chandra X-ray Observatory to refine measurements of the mass of the cluster, using three different methods.

Hubble and Keck studied IDCS 1426 in optical light. Because clusters bend space-time, they are frequently used as natural magnifying glasses to observe objects behind the cluster in a process known as gravitational lensing. A more massive cluster produces a higher gravitational force that bends the light more strongly; by observing how the light traveled around the cluster, the scientists could calculate its weight.

At the same time, Chandra studied the object in the X-ray wavelength. The more massive a galaxy cluster is, the more the gas within it is compressed and heated, producing more X-rays. By observing those X-rays, the scientists were able to compute the mass of the cluster.

All three observations independently provided a mass 250 trillion times higher than the mass of the sun, or 1,000 times more massive than the Milky Way.

IDCS 1426 is not the most massive galaxy cluster in the universe. That distinction is held by a massive cluster that lies only 7 billion light-years from Earth. Known informally as ‘El Gordo,’the hefty cluster weighs in at a whopping 3 quadrillion times the mass of the sun (that’s 3 followed by 15 zeros, or one thousand million million). However, according to Brodwin, the cluster is on track to grow into something that large.

“Statistically speaking, it is a progenitor of ‘El Gordo,'” he said.

After another 3 billion years, the ancient collection should weigh in fairly close to the larger cluster.

The research will be published in The Astrophysical Journal, though a preprint of the study is available on the site Arxiv.org.

The enormous mass of IDCS 1426 in the early in the life of the universe isn’t the only indication of its unusual evolution. In addition to studying its mass, Chandra also took the temperature of the heart of the distant cluster, and found something surprising.

The core of a galactic cluster is an active place, with objects moving around and bumping into one another. This ongoing activity keeps the core hot for the cluster’s early lifetime. Once things slow down, however, conditions in the core begin to relax, and the center begins to release energy in the form of X-rays, causing the center to slowly cool.

Chandra revealed a bright knot of X-rays at the center of IDCS 1426 that were surprisingly cool. In fact, it is the first “cool core” cluster at such an early age in the universe. The cool heart of the cluster provides even more evidence for its formation early in the life of the universe.

“A cool core is a property of an evolved cluster,” Brodwin said.

A collision may have added the extra kick to the formation of the young cluster. The cool core lies not in the center of the IDCS 1426 but off to one side by a few hundred thousand light-years.

“When it is hit by another group or cluster, the cool core will slosh around like wine in the bottom of the wine glass,” Brodwin said.

“Eventually it will settle towards the center, but it hasn’t settled yet.”

All of these suggest an advanced age for the cluster that came as a surprise for a feature so early in the life of the universe.

“The cluster looks at least a billion years old,” Brodwin said.

“It probably really started forming 2 to 3 billion years earlier, which is very early for something of that size.”

Source

 

January 24, 2016

Particles could reveal clues to how Egypt pyramid was built

Filed under: Cool, Cosmology, Gadgets, Planets, Wierd — bferrari @ 11:29 am
FILE - This file Aug. 19, 2011 photo shows the Bent Pyramid at Dahshur, about 25 miles south of Cairo, Egypt. (AP Photo/Coralie Carlson, File)

FILE – This file Aug. 19, 2011 photo shows the Bent Pyramid at Dahshur, about 25 miles south of Cairo, Egypt. (AP Photo/Coralie Carlson, File)

CAIRO — An international team of researchers said Sunday they will soon begin analyzing cosmic particles collected inside Egypt’s Bent Pyramid to search for clues as to how it was built and learn more about the 4,600-year-old structure.

Mehdi Tayoubi, president of the Heritage Innovation Preservation Institute, said that plates planted inside the pyramid last month have collected data on radiographic particles known as muons that rain down from the earth’s atmosphere.

The particles pass through empty spaces but can be absorbed or deflected by harder surfaces. By studying particle accumulations, scientists may learn more about the construction of the pyramid, built by the Pharaoh Snefru.

“For the construction of the pyramids, there is no single theory that is 100 percent proven or checked; They are all theories and hypotheses,” said Hany Helal, the institute’s vice president.

“What we are trying to do with the new technology, we would like to either confirm or change or upgrade or modify the hypotheses that we have on how the pyramids were constructed,” he said.

The Bent Pyramid in Dahshur, just outside Cairo, is distinguished by the bent slope of its sides. It is believed to have been ancient Egypt’s first attempt to build a smooth-sided pyramid.

The Scan Pyramids project, which announced in November thermal anomalies in the 4,500 year-old Khufu Pyramid in Giza, is coupling thermal technology with muons analysis to try to unlock secrets to the construction of several ancient Egyptian pyramids.

Tayoubi said the group plans to start preparations for muons testing in a month in Khufu, the largest of the three Giza pyramids, which is known internationally as Cheops.

“Even if we find one square meter void somewhere, it will bring new questions and hypotheses and maybe it will help solve the definitive questions,” said Tayoubi.

Source

January 21, 2016

There’s a ninth planet out there – now we just need to find it

Filed under: Exoplanets, Kuiper Belt, Outer Solar System — bferrari @ 6:31 pm

Mathematics suggests hidden gas giant in solar system

The truth is out there; way, way out there (source: CalTech/R.Hurt)

The truth is out there; way, way out there (source: CalTech/R.Hurt)

Pic Scientists at CalTech claim to have found proof that there is a ninth planet in the solar system, using computer modeling and historical astronomy data.

The new planet has a mass about 10 times that of Earth and has a very eccentric path around our Sun, making one complete orbit every 10,000 or 20,000 years and travelling 200 times further from the Sun than our orbit. The planet hasn’t been seen, but can be determined to exist based on its effect on objects in the Kuiper Belt that encircles our solar system.

“This would be a real ninth planet,” said Mike Brown, the Richard and Barbara Rosenberg Professor of Planetary Astronomy at the California Institute of Technology. “There have only been two true planets discovered since ancient times, and this would be a third. It’s a pretty substantial chunk of our solar system that’s still out there to be found, which is pretty exciting.”

That’s true, thanks to our modern definition of what a planet is. We’ve known about all the planets as far out as Saturn since before telescopes, and the advent of optics led to the discovery of Uranus back in 1781.

The existence of Neptune, like the new ninth planet, was proved mathematically before it was identified in 1846 based on the erratic movement of Uranus. Pluto was also proved mathematically to exist but it was nearly 100 years later before it was confirmed, and then demoted to dwarf planet status in an infamous 2006 astronomers’ vote.

There’s no fear of that in the case of the new ninth planet – it’s massive enough to cause objects in the Kuiper Belt to move in such a predictable fashion that Brown and his associate Konstantin Batygin estimate there’s only a 0.07 per cent possibility that they are mistaken about its existence.

In a paper published in the latest issue of The Astronomical Journal, the duo detail how they came to find the planet when a student of Brown’s noticed that 13 large objects in the Kuiper Belt were behaving oddly, as though they were being influenced by a much larger body.

Brown and Batygin spent the next 18 months building up complex mathematical simulations of what could be causing the movement and running them through a computer model. Brown supplied the astronomical data and Batygin applied physics to see what could be going on.

“I would bring in some of these observational aspects; he would come back with arguments from theory, and we would push each other. I don’t think the discovery would have happened without that back and forth,” said Brown. “It was perhaps the most fun year of working on a problem in the solar system that I’ve ever had.”

At first the two considered that maybe other Kuiper Belt objects were causing the orbital anomalies, but the sums didn’t add up – the Belt would have had to have 100 times the mass we understand it has. So that left the influence of a planet, and one that was orbiting the Sun at right angles to the orbits of other planets.

orbits

“Your natural response is ‘This orbital geometry can’t be right. This can’t be stable over the long term because, after all, this would cause the planet and these objects to meet and eventually collide,'” said Batygin. “Still, I was very skeptical. I had never seen anything like this in celestial mechanics.”

In order for the theory to be accurate, there would have to be other Kuiper Belt objects on a similar 90-degree trajectory. After three years of looking, the two found four largish objects that did just that.

“We plotted up the positions of those objects and their orbits, and they matched the simulations exactly,” says Brown. “When we found that, my jaw sort of hit the floor.”

Planets are supposed to form from the disk of matter that surrounds a young star, but the unusual orbit suggests that while the ninth planet might have started that way, it got knocked out of alignment, possibly by a major object like Jupiter, and sent on a new orbital trajectory.

Despite orbiting so far away from the Sun, planet nine should still be visible using our most powerful telescopes, and may have been picked up on star surveys and not recognized for what it is. The hunt is now on to be the first to get a clear sighting.

“I would love to find it,” says Brown. “But I’d also be perfectly happy if someone else found it. That is why we’re publishing this paper. We hope that other people are going to get inspired and start searching.”

Source

January 16, 2016

Astronomers may have found most powerful supernova

Filed under: Big Bang, Black Holes, Cool, Cosmology, Gamma Ray Bursts, Supernova — bferrari @ 4:51 pm
130227173855-black-hole-exlarge-169

Enter a caption

  • “This may be the most powerful supernova ever seen by anybody,” Ohio State University professor says

An international team of astronomers may have discovered the biggest and brightest supernova ever.

The explosion was 570 billion times brighter than the sun and 20 times brighter than all the stars in the Milky Way galaxy combined, according to a statement from The Ohio State University, which is leading the study. Scientists are straining to define its strength.

“This may be the most powerful supernova ever seen by anybody … it’s really pushing the envelope on what is possible,” study co-author Krzysztof Stanek, an astronomer at Ohio State, was quoted as saying in The Los Angeles Times.

The team of astronomers released their findings this week in the journal Science. The explosion and a gas cloud that resulted are called ASASSN-15lh after the team of astronomers, All Sky Automated Survey for Supernovae, that discovered it last June.

A supernova is a rare and often dramatic phenomenon that involves the explosion of most of the material within a star. Supernovas can be very bright for a short time and usually release huge amounts of energy.

Searching for the power source

This blast created a massive ball of hot gas that the astronomers are studying through telescopes around the world, Ohio State said. It cannot be seen with the naked eye because it is 3.8 billion light years from Earth.

There’s an object about 10 miles across in the middle of the ball of gas that astronomers are trying to define.

“The honest answer is at this point that we do not know what could be the power source for ASASSN-15lh,” said Subo Dong, lead author of the Science paper, according to Ohio State. He is a Youth Qianren Research Professor of astronomy at the Kavli Institute for Astronomy and Astrophysics at Peking University.

Todd Thompson, professor of astronomy at Ohio State, said the object in the center may be a rare type of star called a millisecond magnetar. Spawned by a supernova, it’s a rapidly spinning, dense star with a powerful magnetic field.

Could it be a ‘supermassive black hole’?

To achieve the brightness recorded, the magnetar would have to spin 1,000 times a second and “convert all that rotational energy to light with nearly 100% efficiency,” Thompson said, according to the Ohio State press release. “It would be the most extreme example of a magnetar that scientists believe to be physically possible.”

The question of whether a suprnova truly caused the space explosion may be settled later this year with help from the Hubble Space Telescope, which will allow astronomers to see the host galaxy surrounding the object in center of the ball of gas, Ohio State said.

If it’s not a magnetar, it may be unusual nuclear activity around “a supermassive black hole,” Ohio State said.

Source

December 26, 2015

China Just Flew This Gigantic Airship To the Edge Of Space

Filed under: Gadgets, Life, Military, Space Ships — bferrari @ 6:54 pm

The technology could have communications and military advantages for China.

China just flew a 250-foot airship to near the top of the Earth’s atmosphere. The solar-powered behemoth can stay airborne for half a year and requires no fuel to get it more than 12 miles into the air—just fill it with helium and let it go; the sun powers it once it reaches its cruising altitude.

Airships predate airplanes, but have been largely supplanted by them. However, they remain superior for pretty much anything that doesn’t require the speed of a jet engine. They can hang around for months, they can carry large payloads, and they can fly way higher than most planes, because an airplane’s wing runs out of air to support it at such high altitudes.

This last property might be the reason China is testing the Yuanmeng airship. During its estimated two-day trial, the airship launched from Xilinhot, Inner Mongolia, bristling with communications gear—”data relays, high-definition observation and spatial imaging” equipment—says the Chinese People’s Daily. The sedentary nature of the airship allows it to sit up at the edge of space and watch. It can surveil the ground, and it can also act as a base station to command fleets of military planes. In a pinch, the Yuanmeng airship could act as a stand-in for communications satellites.

Popular Science speculates on China’s plans for the technology:

Operating higher in near space means that the Yuanmeng would have constant line of sight over a hundred thousand square miles—an important requirement for radar and imaging. Increased sensor coverage means increased warning time against stealthy threats such as cruise missiles, giving Chinese forces a greater opportunity to detect and shoot down such threats. It would also be harder for fighters and surface-to-air missiles to attack near space objects.

They’re not perfect though. The People’s Daily spoke to Yu Quan of the Chinese Academy of Engineering, who told them that “The biggest challenge for the near-space airship is the big temperature difference in the day and night.” Because the airship is so close to space, it experiences space-like extremes of weather as it is baked by the sun and then frozen by the night.

Airships can solve many problems. In much the same way that regular oceangoing ships carry huge loads of goods from continent to continent, airships are also good for transporting goods. Even smaller airships can carry loads of 50 tons. And perhaps they could even replace passenger airplanes as providers of low-cost air travel. They might not be as fast, but they could be a lot more comfortable.

December 18, 2015

Wolf 1061 exoplanet: ‘Super-Earth’ discovered only 14 light-years away

Filed under: Cool, Exoplanets, Extraterrestrial Life, Planets — bferrari @ 10:54 am

Alien life could be closer to us than previously thought. Scientists have just discovered the nearest habitable planet to Earth.

The new world is one of three surrounding a red dwarf star called Wolf 1061, which is just 14 light years away. It was detected by scientists at the University of New South Wales (UNSW) in Australia.

All three planets have the potential to be solid and rocky, but only Wolf 1061c exists within the “Goldilocks zone” — a distance from the star (much smaller and cooler than our sun) that is not too hot and not too cold for liquid water.

“This rare discovery is incredibly exciting,” UNSW’s Duncan Wright, who led the study, told CNN.

“Other planets found that are habitable are not nearly this close to Earth. Because of the close proximity of this planet to us, there is good opportunity to find out more about it.”

“The close proximity of the planets around Wolf 1061 means there is a good chance these planets may pass across the face of the star,” UNSW team member Rob Wittenmyer said in an earlier statement.

“If they do, then it may be possible to study the atmospheres of these planets in future to see whether they would be conducive to life.”

151217121358-wolf-1061-space-super-169

NASA has confirmed more than 1,870 exoplanets — worlds outside our solar system. But this discovery is particularly important because Wolf 1061c is both habitable and close to our solar system.

December 11, 2015

Google and NASA Hope Lightning-Fast Computers Will Unlock the Secrets of Nature

Filed under: Cool, Gadgets, Life, Military — bferrari @ 12:34 pm

Quantum computers can perform about 100 million times faster than today’s machines.

d-wave011

Google has a lot of computers. By many accounts, it has more computers than any other company in the world. Yet, even with so much horsepower at their disposal, Google’s researchers keep running into barriers when trying to solve certain complex problems, particularly those tied to artificial intelligence. Google, in effect, has been stumped.

“We have already encountered problems we would like to solve that are unfeasible with conventional computers,” John Giannandrea, a vice president for engineering at Google, said during a press conference on Tuesday. “We want to understand the future that may lie ahead of us in non-conventional computing.”

One type of machine Google has increasingly turned to for help is called a quantum computer. Such systems tap into the seemingly magical properties of quantum mechanics, the field of science that deals with how atoms and other tiny particles work. They can be used to solve problems that traditional computers simply can’t handle.

On Tuesday, Google issued its most optimistic statements to date around the technology, declaring that the still-primitive quantum machines will probably evolve into revolutionary systems for the computing industry and perhaps, for mankind. The event was held on the NASA Ames campus in Mountain View, Calif., where Google is teaming with NASA and D-Wave Systems, a maker of quantum computers, to build a computing lab. Their work has been underway for a couple of years, but only recently—thanks to a larger, upgraded D-Wave machine—have the researchers seen truly promising results from experiments.

Google revealed on Tuesday that recent test calculations show that a D-Wave computer can obliterate the work of a standard computer chip in performing some tasks. In one test, the D-Wave machine needed just a single second to process calculations that would have taken a standard machine 10,000 years to solve. Overall, Google said the quantum machines appeared to perform 100 million times faster on certain problems. Such a speedup would be a true rarity in the history of computing.

Some serious caveats surround these accomplishments, however. D-Wave’s computer is far from a general-purpose machine. It can perform only a limited set of quantum calculations, and just a few people know how to shape problems suitably for the computer. As a result, Google has been relegated to running what amount to test operations on the D-Wave system, rather than the code used in the company’s day-to-day operations. “We need to make it easier to take a practical optimization problem as it occurs on some engineer’s desk,” Hartmut Neven, a director of engineering at Google, said at the event. “We need to make the input into the machine easier. That is not there yet.”

Google is using the tough optimization calculations in some of its advanced AI technology that everyday people touch. (Its photo-search tools and voice-recognition technology are among the most obvious examples.) But those calculations are done on thousands of interlinked traditional computers. The hope is that Google could someday turn to quantum computers to complement its standard systems and come up with more breakthroughs on as-of-yet unsolvable problems. “It may be several years before this kind of work makes a difference to Google products,” said Giannandrea.

The D-Wave machine, which is also being used by NASA with hopes of improving its simulation and encryption technology, relies on what are known as quantum bits, or qubits. Unlike a typical binary digit that must be either a 1 or a zero, a qubit can be a 1, zero, or a state somewhere in between at any moment. It helps to have a degree or two in physics to fully understand how quantum computers work, but the upshot of the technology is that the machines can simultaneously consider an incredible number of possible solutions to a problem. This makes quantum computers well-suited for optimization problems, in which, for example, someone might be trying to find out the best way to route the traffic of thousands of planes going into and out of an airport. It so happens that much of today’s cutting-edge AI software relies on crunching similar sets of these tricky optimization problems.

Neven has spent the most time of any Google employee working with D-Wave machines, and he sees promise for them in areas such as improving battery technology, desalinization machines, and solar cells. The unique qualities of qubits may lend them to uncovering properties about materials, which could result in much more efficient industrial machines. “Because the operating system of nature, as far as we understand it, is quantum physics, you need a process that acts on quantum physics to describe parts of the universe,” Neven said. “Sooner or later, quantum computers will be the tool of choice to solve these problems.”

Quantum-Computer

Source

November 25, 2015

Blue Origin makes historic reusable rocket landing in epic test flight

Filed under: Cool, Earth, Inner Solar System, Moon, Space Ships — bferrari @ 10:38 am

Go AMAZON Go !

blueorigin_launch_web

The private spaceflight company Blue Origin just launched itself into the history books by successfully flying and landing a reusable rocket.

Powered by the company’s own BE-3 engine, the rocket kicked off the launchpad on Nov. 23 at 11:21 a.m. Central Time, carrying the New Shepard space vehicle. The stunning feat was captured in an amazing test flight video released by the company.

Shortly after liftoff, the rocket separated from the vehicle. In the past, a spent rocket would fall back to Earth like a stone, having completed its one and only flight.

But Blue Origin’s rocket didn’t fall aimlessly back to Earth; instead, it was guided toward a landing pad, where it re-ignited its engines, hovered briefly above the ground and finally touched down softly on the pad, remaining upright and intact. This soft landing means the rocket can be used for more flights, which Blue Origin and other companies have said will significantly drive down the cost of spaceflight. [See more photos of Blue Origin’s epic test flight]

No other agency or company has successfully landed a reusable rocket before.

“Rockets have always been expendable. Not anymore,” stated a blog post on the company’s website, written by founder Jeff Bezos, the billionaire who also founded Amazon.com. “Now safely tucked away at our launch site in West Texas is the rarest of beasts, a used rocket. This flight validates our vehicle architecture and design.”

Blue Origin’s New Shepard capsule reached a maximum altitude of 329,839 feet and a speed of Mach 3.72, meaning 3.72 times the speed of sound, or about 2,854 mph, according a press release.

The release also laid out the details of the rocket booster landing. The rocket’s physical design first helped it to glide back toward the launch pad. Closer to the ground, the vehicle’s eight “drag brakes” reduced its terminal speed to 387 mph. Additional fins on the outside of the vehicle “steered it through 119-mph high-altitude crosswinds to a location precisely aligned with and 5,000 feet above the landing pad,” the release stated.

Finally, the BE-3 engine re-ignited “to slow the booster as the landing gear deployed and the vehicle descended the last 100 feet at 4.4 mph to touch down on the pad.”

The New Shepard crew vehicle also landed safely, guided down to Earth by parachutes.

Blue Origin has been somewhat secretive about the progress of its spaceflight vehicles and rockets; the company typically doesn’t announce test flights until they are already completed. Blue Origin intends to use the New Shepard vehicle for suborbital space tourism and as a microgravity science laboratory. (Suborbital means the vehicle can fly only to a lower altitude than is necessary to start orbiting the Earth — it would have to travel higher, and faster, to reach altitudes achieved by orbiting satellites or the International Space Station, for example.)

The company is also working on an orbital vehicle, which has been nicknamed “Very Big Brother.”

“We are building Blue Origin to seed an enduring human presence in space, to help us move beyond this blue planet that is the origin of all we know,” Bezos wrote in the blog post. “We are pursuing this vision patiently, step by step. Our fantastic team in Kent [Washington], Van Horn [Texas] and Cape Canaveral [Florida] is working hard not just to build space vehicles, but to bring closer the day when millions of people can live and work in space.”

Blue Origin is not the only company pursuing a reusable rocket design. The private spaceflight company SpaceX, founded by another Internet billionaire, Elon Musk, has made two efforts to set down a rocket on a landing pad after flight. But both times, the rocket came in too hard and too fast, and crashed on the landing pad.

On Nov. 24, Musk tweeted, “Congrats to Jeff Bezos and the BO team for achieving VTOL [vertical takeoff and landing] on their booster.” But, in a second tweet, he said, “It is, however, important to clear up the difference between ‘space’ and ‘orbit,’ as described well by https://what-if.xkcd.com/58/.”

SpaceX is not building a suborbital vehicle like New Shepard. Musk’s company’s robotic Dragon cargo capsule has already flown supplies to the International Space Station, and SpaceX has been selected by NASA to build a crew vehicle that will take people to the orbiting laboratory.

Source

Older Posts »

The WordPress Classic Theme. Create a free website or blog at WordPress.com.

Follow

Get every new post delivered to your Inbox.

Join 187 other followers