SpaceJibe

December 6, 2017

Voyager 1 fires thrusters last used in 1980 – and they worked!

Filed under: Cool, Gadgets, Outer Solar System, Space Exploration, Space Ships — bferrari @ 7:06 pm

Ancient assembler code checked out and now probe’s mission can be extended

voyagers_position

NASA’s announced that Voyager 1’s already-amazingly-long mission will probably be extended for an extra two or three years, thanks to a successful attempt to use thrusters that haven’t fired up since the year 1980.

As NASA announced last Friday, Voyager 1’s been using its “attitude control thrusters” (ACMs) for decades, to nudge the probe so that its antenna points at Earth and it can stay in touch.

While the ACMs work, since 2014 they’ve use more fuel than in the past. As Voyager 1 carries a finite quantity of fuel, thirsty thrusters are not welcome.

The probe does, however, have other thrusters – its “trajectory correction maneuver” (TCM) thrusters were last used as it passed Saturn, to help point Voyager 1’s instruments at the ringed gas giant. As the TCMs are mounted on the craft’s rear and Voyager doesn’t need a speed boost – it’s already doing 17.46 km/second – they’ve been left alone since 1980.

But Voyager’s masters felt the ailing ACMs meant it was worth trying to see if the TCMs could pick up the slack.

Testing that hypothesis was a job for software developers, as Jet Propulsion Laboratory chief engineer Chris Jones said “The Voyager flight team dug up decades-old data and examined the software that was coded in an outdated assembler language, to make sure we could safely test the thrusters.”

Helping things out was the fact that the same model of thruster used on Voyager 1 was later deployed on Cassini and Dawn probes, meaning NASA had experience with the hardware.

So last Tuesday, November 28th, the Voyager team told the far-off probe to fire the TCM thrusters. And late the next day – after a 38-hour radio round trip – they learned that they worked and did the job just as well as the ACMS.

“With these thrusters … we will be able to extend the life of the Voyager 1 spacecraft by two to three years,” said Suzanne Dodd, project manager for Voyager. She added that the Voyager team is so chuffed with the result, they may test the TCMs on Voyager 2, too, even though its ACMs continued to perform well.

Both Voyagers are powered by radioisotope thermoelectric generators, devices that can turn heat into electricity, but which also degrade over time. NASA plans to switch off the Voyagers’ instruments as their generators deplete, eventually leaving just the radios. Once even they stop working, the craft have enough momentum to keep sailing on into the Galaxy, complete with their golden records that attempt to explain humanity, until something nasty stops them.

July 7, 2017

HERE’S THE 411 ON THE EMDRIVE: THE ‘PHYSICS-DEFYING’ THRUSTER EVEN NASA IS PUZZLED OVER

Filed under: Cool, Gadgets, Space Exploration, Space Ships — bferrari @ 8:04 pm

Even if you don’t keep up with developments in space propulsion technology, you’ve still probably heard about the EmDrive. You’ve probably seen headlines declaring it the key to interstellar travel, and claims that it will drastically reduce travel time across our solar system, making our dreams of people walking on other planets even more of a reality. There have even been claims that this highly controversial technology is the key to creating warp drives.

These are bold claims, and as the great cosmologist and astrophysicist Carl Sagan once said, “extraordinary claims require extraordinary evidence.” With that in mind, we thought it’d be helpful to break down what we know about the enigmatic EmDrive, and whether it is, in fact, the key to mankind exploring the stars.

So without further ado, here’s absolutely everything you need to know about the world’s most puzzling propulsion device.

This article is periodically updated in response to news and developments regarding the EM Drive and the theories surrounding it.

A new, leaked NASA paper points to potentially working EmDrive

A leaked NASA paper obtained by the International Business Times via a post by a user on the NASA Spaceflight forums. The post was originally deleted by the forum’s moderators, however, the document has since been posted and remains currently viewable here. The paper is ostensibly the same that was discussed earlier in the year (reported below). The information in the paper clearly points to a working version of the EmDrive, and while it’s yet to be published, it is still set to run in the Institute of Aeronautics and Astronautics’ scientific journal, AIAA Journal of Propulsion and Power.

As discussed below, this is a massive step forward for the EmDrive and for those who believe in the theoretical technology. If the paper on NASA’s findings does in fact pass muster and see the light of day — which seems very likely — it’ll be a boon for further research and development of the EmDrive tech. This would open the door for continued study and tests, and may finally put humans on the road to fast, lightweight space travel.

An EmDrive paper has finally been accepted by peer review

Originally, this article pointed out that previous studies and papers on the EmDrive have either not been submitted, or passed peer review. Those days are in the past, however, given a NASA Eagleworks’ paper on the EmDrive test which has reportedly passed the peer review process and will soon be published by the American Institute of Aeronautics and Astronautics’ AIAA Journal of Propulsion and Power.

This is an important step for the EmDrive as it adds legitimacy to the technology and the tests done thus far, opening the door for other groups to replicate the tests. This will also allow other groups to devote more resources to uncovering why and how it works, and how to iterate on the drive to make it a viable form of propulsion. So, while a single peer-reviewed paper isn’t going to suddenly equip the human race with interplanetary travel, it’s the first step toward eventually realizing that possible future.

What is the EmDrive?

Simply put, the EmDrive is a conundrum. First designed in 2001 by aerospace engineer Roger Shawyer, the technology can be summed up as a propellantless propulsion system, meaning the engine doesn’t use fuel to cause a reaction. Removing the need for fuel makes a craft substantially lighter, and therefore easier to move (and cheaper to make, theoretically). In addition, the hypothetical drive is able to reach extremely high speeds — we’re talking potentially getting humans to the outer reaches of the solar system in a matter of months.

We’re talking potentially getting humans to the outer reaches of the solar system in a matter of months.

The issue is, the entire concept of a reactionless drive is inconsistent with Newton’s conservation of momentum, which states that within a closed system, linear and angular momentum remain constant regardless of any changes that take place within said system. More plainly: Unless an outside force is applied, an object will not move.

Reactionless drives are named as such because they lack the “reaction” defined in Newton’s third law: “For every action there is an equal and opposite reaction.” But this goes against our current fundamental understanding of physics: An action (propulsion of a craft) taking place without a reaction (ignition of fuel and expulsion of mass) should be impossible. For such a thing to occur, it would mean an as-yet-undefined phenomenon is taking place — or our understanding of physics is completely wrong.

How does the EmDrive “work?”

Setting aside the potentially physics-breaking improbabilities of the technology, let’s break down in simple terms how the proposed drive operates. The EmDrive is what is called an RF resonant cavity thruster, and is one of several hypothetical machines that use this model. These designs work by having a magnetron push microwaves into a closed truncated cone, then push against the short end of the cone, and propel the craft forward.

This is in contrast to the form of propulsion current spacecraft use, which burn large quantities of fuel to expel a massive amount of energy and mass to rocket the craft into the air. An often-used metaphor for the inefficacy of this is to compare the particles pushing against the enclosure and producing thrust to the act of sitting in a car and pushing a steering wheel to move the car forward.

While tests have been done on experimental versions of the drive — with low energy inputs resulting in a few micronewtons of thrust (about as much force as the weight of a penny) — The first peer-reviewed paper has only been recently accepted, and none of the findings from other tests have ever been published in a peer-reviewed journal. It’s possible some positive thrust results may have been caused by interference or an unaccounted error with test equipment. The fact that NASA Eagleworks’ paper has been reportedly accepted by peer review and will be published in AIAA Journal of Propulsion and Power does add quite a bit of legitimacy to these claims, however.

Although there’s been much skepticism regarding the EmDrive prior to the Eagleworks paper, it’s important to note that there’s been a number of people who have tested the drive and reported achieving thrust.

  • In 2001, Shawyer was given a £45,000 grant from the British government to test the EmDrive. His test reportedly achieved 0.016 Newtons of force and required 850 watts of power, but no peer review of the tests verified this. It’s worth noting, however, that this number was low enough that it was potentially an experimental error.
  • In 2008, Yang Juan and a team of Chinese researches at the Northwestern Polytechnical University allegedly verified the theory behind RF resonant cavity thrusters, and subsequently built their own version in 2010, testing the drivemultiple times from 2012 to 2014. Tests results were purportedly positive, achieving up yo 750 mN (millinewtons) of thrust, and requiring 2,500 watts of power.
  • In 2014, NASA researchers, tested their own version of an EmDrive, including in a hard vacuum. Once again, the group reported thrust (about 1/1,000 of Shawyer’s claims), and once again, the data was never published through peer-reviewed sources. Other NASA groups are skeptical of researchers’ claims, but in their paper, it is clearly stated that these findings neither confirm nor refute the drive, instead calling for further tests.
  • In 2015, that same NASA group tested a version of chemical engineer Guido Fetta’s Cannae Drive (née Q Drive), and reported positive net thrust. Similarly, a research group at Dresden University of Technology also tested the drive, again reporting thrust, both predicted and unexpected.
  • Yet another test by a NASA research group, Eagleworks, in late 2015 seemingly confirmed the validity of the EmDrive. The test corrected errors that had occurred in the previous tests, and surprisingly, the drive achieved thrust. However, the group has not yet submitted their findings for peer review. It’s possible that other unforeseen errors in the experiment may have cause thrust (the most likely of which is that the vacuum was compromised, causing heat to expand air within it testing environment and move the drive). Whether the findings are ultimately published or not, more tests need to be done. That’s exactly what Glenn Research Center in Cleveland, Ohio, NASA’s Jet Propulsion Laboratory, and Johns Hopkins University Applied Physics Laboratory intend to do. For EmDrive believers, there seems to be some hope.

In mid-2016, a new theory was put forth by physicist Michael McCulloch, a researcher from Plymouth University in the United Kingdom, which may offer an explanation of the thrust observed in tests. McCulloch’s theory deals with inertia and something called the Unruh effect — a concept predicted by relativity, which makes the universe appear hotter the more you accelerate, with the heat observed relative to the acceleration.

McCulloch’s new theory deals with the unconfirmed concept of Unruh radiation, which infers that particles form out of the vacuum of space as a direct result from the observed heating of the universe due to acceleration. This theoretical concept largely fits into our current understanding of the universe and predicts the results of inertia we currently observe, albeit with one notable exception: small accelerations on the scale of about what has been observed while testing the EM Drive.

This acceleration comes as a result of the Unruh radiation particles, whose wavelengths increase as acceleration decreases. Unruh particles at different wavelengths would have to fit at either end of the EM Drive’s cone, and as they bounce around inside the cone, their inertia would change as well, which would ultimately result in thrust.

McCulloch’s theory is, admittedly, a bit difficult to parlay into succinct layman’s terms. If you’re curious and want to delve into further reading on the theory, you can read McCulloch’s entire paper discussing his theory here. The point here is that, should the Unruh Effect and Unruh Radiation be confirmed, it offers an entirely plausible explanation for the EM Drive’s seemingly heretofore impossible thrust observations. This will require further research and experimentation, and gives the propulsion system even more momentum for testing.

Implications of a working EmDrive

It’s easy to see how many in the scientific community are wary of EmDrive and RF resonant cavity thrusts altogether. But on the other hand, the wealth of studies raises a few questions: Why is there such a interest in the technology, and why do so many people wish to test it? What exactly are the claims being made about the drive that make it such an attractive idea? While everything from atmospheric temperature-controlling satellites, to safer and more efficient automobiles have been drummed up as potential applications for the drive, the real draw of the technology — and the impetus for its creation in the first place — is the implications for space travel.

Spacecraft equipped with a reactionless drive could potentially make it to the moon in just a few hours, Mars in two to three months, and Pluto within two years. These are extremely bold claims, but if the EmDrive does turn out to be a legitimate technology, they may not be all that outlandish. And with no need to pack several tons-worth of fuel, spacecraft become cheaper and easier to produce, and far lighter.

For NASA and other such organizations, including the numerous private space corporations like SpaceX, lightweight, affordable spacecraft that can travel to remote parts of space fast are something of a unicorn. Still, for that to become a reality, the science has to add up.

Shawyer is adamant that there is no need for pseudoscience or quantum theories to explain how EmDrive works. Instead, he believes that current models of Newtonian physics offer an explanation, and has written papers on the subject, one of which is currently being peer reviewed (separate from the Eagleworks paper). He expects the paper to be published sometime this year. While in the past Shawyer has been criticized by other scientists for incorrect and inconsistent science, if the paper does indeed get published, it may begin to legitimize the EmDrive and spur more testing and research.

Despite his insistence that the drive behaves within the laws of physics, it hasn’t prevented him from making bold assertions regarding EmDrive. Shawyer has gone on record saying that this new drive produced warp bubbles which allow the drive to move, claiming that this is how NASA’s test results were likely achieved. Assertions such as these have garnered much interest online, but have no clear supporting data and will (at the very least) require extensive testing and debate in order to be taken seriously by the scientific community — the majority of which remain skeptical of Shawyer’s claims. Hopefully, with this new peer reviewed paper, more EmDrive tests will be undertaken, helping elucidate just how this thing works.

Colin Johnston of the Armagh Planetarium wrote an extensive critique of the EmDrive and the inconclusive findings of numerous tests. Similarly, Corey S. Powell of Discovery wrote his own indictment of both Shawyer’s EmDrive and Fetta’s Cannae Drive, as well as the recent fervor over NASA’s findings. Both point out the need for greater discretion when reporting on such instances. Professor and mathematical physicist, John C. Baez expressed his exhaustion at the conceptual technology’s persistence in debates and discussions, calling the entire notion of a reactionless drive “baloney.” His impassioned dismissal echoes the sentiments of many others.

Shawyer’s EmDrive has been met with enthusiasm elsewhere, including the website NASASpaceFlight.com — where information about the most recent Eagleworks’ tests was first posted — and the popular journal New Scientist, which published a favorable and optimistic paper on EmDrive. (The editors later issued a statement that, despite enduring excitement over the idea, they should have shown more tact when writing on the controversial subject.)

April 14, 2017

Saturn’s Moon Enceladus Shows More Signs It Could Support Alien Life

Filed under: Cool, Extraterrestrial Life, Life, Moon, Saturn — bferrari @ 9:07 am

Saturn’s icy moon Enceladus is looking more and more like a habitable world.

The same sorts of chemical reactions that sustain life near deep-sea hydrothermal vents here on Earth could potentially be occurring within Enceladus’ subsurface ocean, a new study published today (April 13) in the journal Science suggests.

These reactions depend on the presence of molecular hydrogen (H2), which, the new study reports, is likely being produced continuously by reactions between hot water and rock deep down in Enceladus’ sea.

Related: Photos of Enceladus, Saturn’s Geyser-Blasting Moon

“The abundance of H2, along with previously observed carbonate species, suggests a state of chemical disequilibria in the Enceladus ocean that represents a chemical energy source capable of supporting life,” Jeffrey Seewald, of the Marine Chemistry and Geochemistry Department at the Woods Hole Oceanographic Institution in Massachusetts, wrote in an accompanying “Perspectives” piece in the same issue of Science. (Seewald was not involved in the new Enceladus study.)

A Geyser-Blasting Ocean World

The 313-mile-wide (504 kilometers) Enceladus is just Saturn’s sixth-largest moon, but the object has loomed large in the minds of astrobiologists since 2005.

In that year, NASA’s Saturn-orbiting Cassini spacecraft first spotted geysers of water ice erupting from “tiger stripe” fissures near Enceladus’ south pole. Scientists think these geysers are blasting material from a sizeable ocean buried beneath the satellite’s ice shell.

So, Enceladus has liquid water, one of the key ingredients required for life as we know it. (This ocean stays liquid because Saturn’s immense gravitational pull twists and stretches the moon, generating internal “tidal” heat.) And the new study suggests that the satellite possesses another key ingredient as well: an energy source.

 

A team of researchers led by Hunter Waite, of the Southwest Research Institute (SwRI) in San Antonio, analyzed observations made by Cassini during an October 2015 dive through Enceladus’ geyser plume.

This plunge was special in several ways. For one thing, it was Cassini’s deepest-ever dive through the plume; the probe got within a mere 30 miles (49 km) of Enceladus’ surface. In addition, Cassini’s Ion and Neutral Mass Spectrometer (INMS) instrument alternated between “open-source” and “closed-source” modes during the encounter, rather than sticking to closed source (the usual routine).

INMS is just 0.25 percent as sensitive in open-source mode as it is in closed-source mode, Waite and his colleagues wrote in the new Science paper. But open source has a key advantage: It minimizes artifacts that have complicated previous attempts to measure H2 levels in the plume.

With this analytical hurdle cleared, Waite and his team were able to calculate that H2 makes up between 0.4 percent and 1.4 percent of the volume of Enceladus’ geyser plume. Further calculations revealed that carbon dioxide (CO2) makes up an additional 0.3 percent to 0.8 percent of the plume’s volume.

Related: Inside Enceladus, Icy Moon of Saturn (Infographic)

The molecular hydrogen is most likely being produced continuously by reactions between hot water and rock in and around Enceladus’ core, Waite and his colleagues concluded. They considered other possible explanations and found them wanting. For example, neither Enceladus’ ocean nor its ice shell are viable long-term reservoirs for volatile H2, the authors wrote, and processes that disassociate H2 from water ice in the shell don’t seem capable of generating the volume measured in the plume.

The hydrothermal explanation is also consistent with a 2016 study by another research group, which concluded that tiny silica grains detected by Cassini could have been produced only in hot water at significant depths.

“The story seems to be fitting together,” Chris Glein of SwRI, a co-author of the new Science paper, told Space.com.

Deep-Sea Chemical Reactions

Earth’s deep-sea hydrothermal vents support rich communities of life, ecosystems powered by chemical energy rather than sunlight.

“Some of the most primitive metabolic pathways utilized by microbes in these environments involve the reduction of carbon dioxide (CO2) with H2 to form methane (CH4) by a process known as methanogenesis,” Seewald wrote.

The inferred presence of H2 and CO2 in Enceladus’ ocean therefore suggests that similar reactions could well be occurring deep beneath the moon’s icy shell. Indeed, the observed H2 levels indicate that a lot of chemical energy is potentially available in the ocean, Glein said.

“It’s quite a bit larger than the minimum energy required to support methanogenesis,” he said.

Glein stressed, however, that nobody knows whether such reactions are actually occurring on Enceladus.

“This is not a detection of life,” Glein said. “It increases the habitability, but I would never suggest that this makes Enceladus more or less likely to have life itself. I think the only way to answer that question is, we need data.”

Seewald also counseled caution on astrobiological interpretations. He noted, for example, that molecular hydrogen is rare in Earth’s seawater, because hungry microbes quickly gobble it up.

“Is the presence of H2 in the Enceladus ocean an indicator for the absence of life, or is it a reflection of the very different geochemical environment and associated ecosystems on Enceladus?” Seewald wrote. “We still have a long way to go in our understanding of processes regulating the exchange of mass and heat across geological interfaces that define the internal structure of Enceladus and other ice-covered planetary bodies.”

Originally published on Space.com.

February 22, 2017

Major Discovery! 7 Earth-Size Alien Planets Circle Nearby Star

Astronomers have never seen anything like this before: Seven Earth-size alien worlds orbit the same tiny, dim star, and all of them may be capable of supporting life as we know it, a new study reports.

“Looking for life elsewhere, this system is probably our best bet as of today,” study co-author Brice-Olivier Demory, a professor at the Center for Space and Habitability at the University of Bern in Switzerland, said in a statement.

The exoplanets circle the star TRAPPIST-1, which lies just 39 light-years from Earth — a mere stone’s throw in the cosmic scheme of things. So speculation about the alien worlds’ life-hosting potential should soon be informed by hard data, study team members said. [Images: The 7 Earth-Size Worlds of TRAPPIST-1]

“We can expect that, within a few years, we will know a lot more about these planets, and with hope, if there is life there, [we will know] within a decade,” co-author Amaury Triaud, of the Institute of Astronomy at the University of Cambridge in England, told reporters on Tuesday (Feb. 21).

TRAPPIST-1 is an ultracool dwarf star that’s only slightly larger than the planet Jupiter and about 2,000 times dimmer than the sun.

The research team, led by Michaël Gillon of the University of Liège in Belgium, originally studied the star using the TRAnsiting Planets and PlanetesImals Small Telescope (TRAPPIST), an instrument at the La Silla Observatory in Chile. (This explains the star’s common name; the object is also known as 2MASS J23062928-0502285.)

TRAPPIST spotted regular dimming events, which the team interpreted as evidence of three different planets crossing the face of, or transiting, the star. In May 2016, Gillon and his colleagues announced the existence of these three alien worlds, called TRAPPIST-1b, TRAPPIST-1c and TRAPPIST-1d. All three, the team reported, are roughly the size of Earth and may be capable of supporting life.

The astronomers kept studying the system, using TRAPPIST and a number of other telescopes on the ground. This follow-up work suggested that the supposed TRAPPIST-1d transits were actually caused by more than one planet, and also revealed evidence of additional possible worlds in the system.

A three-week observation campaign by NASA’s Spitzer Space Telescope in September and October 2016 helped clear all of this up. Spitzer’s transit data confirmed the existence of planets b and c, but revealed that three worlds are responsible for the originally detected “TRAPPIST-1d” signal. And Spitzer also spotted two more exoplanets in the system, for a total of seven.

These seven worlds — which Gillon and his colleagues announced in the new study, published online today (Feb. 22) in the journal Nature — are all roughly Earth-size. The smallest is about 75 percent as massive as Earth, while the largest is just 10 percent heftier than our planet, the researchers said.

“This is the first time that so many planets of this kind are found around the same star,” Gillon said in Tuesday’s news conference. [Gallery: The Strangest Alien Planets]

All seven alien worlds occupy tight orbits, lying closer to TRAPPIST-1 than Mercury does to the sun. The orbital periods of the innermost six worlds range from 1.5 days to 12.4 days; the outermost planet, known as TRAPPIST-1h, is thought to complete one lap in about 20 days. (Spitzer spotted just one transit by TRAPPIST-1h, so its orbital path is not well-known.)

The six inner planets are in near-resonance, meaning their orbital periods are related to each other by a ratio of two small integers. This arrangement suggests that the worlds formed farther out in the system and then migrated in to their current positions, study team members said.

Data gathered by the various telescopes suggest that all six inner planets are rocky, like the Earth; not enough is known about planet h to determine its composition.

Because the seven alien worlds orbit so tightly, they’re probably all tidally locked, Gillon said. That is, they likely always show the same face to their host star, just as Earth’s moon only shows the “near side” to us.

And powerful gravitational tugs, both from TRAPPIST-1 and neighboring planets, could heat up the worlds’ insides considerably, leading to lots of volcanism, especially on the innermost two worlds, the researchers added.

Despite these characteristics — extreme closeness to their star and tidal locking — the TRAPPIST-1 system is a promising place to search for E.T., study team members said.

TRAPPIST-1 is so dim and cool that its “habitable zone” — that just-right range of distances where liquid water could exist — is quite close to the star. And even tidally locked planets are thought to be potentially habitable, as long as they have atmospheres that can transport heat from the day side to the night side, Gillon said.

“You’d have just a [temperature] gradient, but it’s not catastrophic for life,” he said.

Indeed, modeling work performed by the team suggests that three of the seven TRAPPIST-1 planets (e, f and g) are in the habitable zone. And it’s possible that, given the right atmospheric conditions, water — and, by extension, life as we know it — could exist on all seven, Gillon said.

Such speculation is preliminary, he and other team members stressed; more data will be needed before the TRAPPIST-1 planets’ habitability can be gauged with confidence. Such work is already underway. The team has been studying the worlds’ atmospheres with NASA’s Hubble Space Telescope, for example.

Detailed characterization — and the search for signs of possible life, such as oxygen and methane — will have to wait until more powerful instruments come online, Triaud said. But that wait shouldn’t be long: NASA’s $8.8 billion James Webb Space Telescope is slated to launch in late 2018, and huge, capable ground-based scopes such as the European Extremely Large Telescope and the Giant Magellan Telescope are scheduled to come online in the early to mid-2020s.

“I think that we’ve made a crucial step toward finding [out] if there is life out there,” Triaud said. “Here, if life managed to thrive, and releases gases similar to that that we have on Earth, then we will know.”

Characteristics of the seven TRAPPIST-1 worlds, compared to the rocky planets in our solar system. (NASA/JPL-Caltech)

Characteristics of the seven TRAPPIST-1 worlds, compared to the rocky planets in our solar system. (NASA/JPL-Caltech)

If there were life-forms on one or more of the TRAPPIST-1 worlds, what would they see? Because of the star’s dimness, even daytime skies would never get brighter than Earth’s are just after sunset, Triaud said. (Still, the air would be warm, because most of TRAPPIST-1’s light is radiated in infrared, not visible, wavelengths.) And everything would be suffused in a sort of salmon-colored glow.

“The spectacle would be beautiful, because every now and then you would see another planet, maybe about as big as twice [Earth’s] moon in the sky, depending on which planet you were on,” Triaud said.

Future work may help determine just how common such seemingly exotic vistas are in the sun’s neck of the cosmic woods.

“About 15 percent of the stars in our neighborhood are very cool stars like TRAPPIST-1,” Demory said in the same statement. “We have a list of about 600 targets that we will observe in the future.”

Source

February 11, 2017

Ten reasons why NASA’s James Webb Space Telescope will kick some cosmic butt

Filed under: Big Bang, Cool, Cosmology, Extraterrestrial Life, Gadgets, Space Exploration — bferrari @ 3:05 pm

Here are ten amazing facts about the JWST that you might not have known.

James Webb Space Telescope

James Webb Space Telescope

1. It’s as big as a tennis court

With a sunshield 22 metres (72 feet) in length, the size of a tennis court, and a mirror 6.5 metres (21 feet) wide the JWST, which is due to launch in October 2018, is over twice the size of the Hubble Space Telescope, making it the largest space telescope ever launched.
2. The mirrors are coated in a golf ball’s worth of gold
The JWST’s mirrors are covered in gold to optimise them for infrared light, with the gold further protected by a thin layer of glass. The thickness of this gold coating is 0.00001 centimetres across the 25 square-metre mirror’s surface, and in total the gold weighs 48.25 grams, roughly equivalent to the weight of a golf ball.
3. It’ll be about four times further from Earth than the Moon

The JWST will take about a month to reach a position 1.5 million kilometres (930,000 miles) from Earth known as Lagrange point 2, or L2. Here the telescope’s observations will be unhindered by Earth and the Moon although, if it malfunctions (as happened with Hubble), we currently have no way to go and fix it.

 

4. It could see a penny 24 miles away

The angular resolution of the JWST, which is the sharpness of the images, is incredibly precise. It can see at a resolution of 0.1 arc-seconds, which means that it could resolve a penny 24 miles (40 kilometres) away or a football 340 miles (550 kilometres) away.

5. It could find water on exoplanets

One of the JWST’s most notable abilities is that it will be able to detect planets around nearby stars by measuring infrared radiation, and it will even be able to measure the atmospheres of exoplanets by studying the starlight that passes through. By doing this it will be able to determine if an exoplanet has liquid water on its surface.

6. It’s seven times more powerful than the Hubble Space Telescope

The giant mirror of the JWST is made of 18 individual hexagonal segments composed of lightweight beryllium. It is almost three times the size of Hubble’s mirror, boasting a light-collecting area seven times greater, but both mirrors weigh almost the same owing to the lighter materials used on the JWST’s mirror.

7. It’ll see the first light of the universe

One of the goals of the JWST is to observe the first stars and galaxies that formed just a few hundred million years after the Big Bang, an era of the universe that is not fully understood. The telescope will be sensitive to infrared light, which will enable it to do this.

8. It will unfold to its massive size in space

Many features of the JWST, including its giant mirrors and sunshield, are designed to be launched on a rocket in a smaller payload. The telescope will launch in a compact outfit and will unfold in its full configuration once it reaches space.

9. One side is hotter than Death Valley, the other is colder than Antarctica

The side of the JWST that will always face the Sun, the bottom of the sunshield, will reach temperatures of 85°C (185 °F). The other side, which houses the mirrors and science instruments, will operate at a much nippier -233°C (-388 °F).

10. It could keep working for a decade

The official mission lifespan for the JWST is between five and ten years. The telescope is limited by the amount of fuel it has on board used to maintain its position, which will be enough for a ten-year lifetime. Of course, other factors like budget cuts or malfunctions could end the mission earlier.

Leave a Comment

September 19, 2016

NASA is building the largest rocket of all time for a 2018 launch

Filed under: Cool, Inner Solar System, Mars, Military, Space Exploration, Space Ships — bferrari @ 8:54 am
Artist's rendering of a blueprint of the completed Space Launch System. (NASA/MSFC)

Artist’s rendering of a blueprint of the completed Space Launch System. (NASA/MSFC)

NASA has worked on some inspiring interplanetary projects in the last few years, but few have been as ambitious as the simply-named Space Launch System, a new rocket that will be the largest ever built at 384 feet tall, surpassing even the mighty Saturn V(363 feet), the rocket that took humanity to the moon. It will also be more powerful, with20 percent more thrust using liquid hydrogen and oxygen as fuel. Last week, NASA announced that the Space Launch System, SLS for short, is on track to perform its first unmanned test launch in 2018. The larger goal is to carry humans into orbit around an asteroid, and then to Mars by the 2030s. After that, NASA says the rocket could be used to reach Saturn and Jupiter.

At the moment, even getting off the ground would be progress: since the retirement of the Space Shuttle in 2011, NASA has been left without any domestic capability to launch American astronauts into space; instead it has been purchasing rides for them aboard Russian Soyuz spacecraft at high cost. While SpaceX and other private companies are working furiously to provide their own human passenger spacecraft for travel into Earth’s orbit, NASA wants to go even further. The agency has begun testing models of the SLSand initial construction of some the major components. It says the first test flight will have an initial cost of $7 billion. The SLS will also be reusing some leftover parts from the inventory of the retired Space Shuttle, including its engines.

However, as with many large NASA projects, the SLS has already been delayed from an initial flight in 2017, and lawmakers in Congress, who must approve NASA’s budget, areconcerned about further delays and cost overruns. Whether NASA is able to keep the project on track remains to be seen, but at the moment, it’s all systems go. Check out the progress and promise in photos and conceptual illustrations below.

NASA engineers used a 67.5-inch model to test how environmental factors including wind and water would affect the rocket on the launchpad. (Credit: NASA/LaRC)

NASA engineers used a 67.5-inch model to test how environmental factors including wind and water would affect the rocket on the launchpad. (Credit: NASA/LaRC)

 

Artist's rendering of the Space Launch System sitting on the launchpad at Kennedy Space Center in Cape Canaveral, Florida. (NASA/MSFC)

Artist’s rendering of the Space Launch System sitting on the launchpad at Kennedy Space Center in Cape Canaveral, Florida. (NASA/MSFC)

More awesome images here:

Source

Leave a Comment

August 24, 2016

‘Second Earth’ exoplanet found right under our noses – just four light years away

Filed under: Cool, Cosmology, Exoplanets, Extraterrestrial Life, Life, Outer Solar System — bferrari @ 2:29 pm

Proxima b is a likely target for Starshot project

 

Artist's impression of Proxima b and Proxima Centauri [Photo credit: ESO/M. Kornmesser]

Artist’s impression of Proxima b and Proxima Centauri [Photo credit: ESO/M. Kornmesser]

Rumours that a terrestrial planet orbiting Proxima Centauri – the Sun’s closest neighbour – may be Earth-like have been confirmed today in a paper published in Nature.

The possibility that extraterrestrial life may exist next door was first reported last week in Der Spiegel, a German weekly news magazine.

Excitement bubbled over and the European Southern Observatory refused to confirm or deny the rumours, as it wanted to keep the research under wraps. But it eventually gave in, and announced that all details would be revealed at the end of August.

Tantalising evidence shows the candidate planet, known as Proxima b, may be small and rocky and lies in the habitable zone around its star – just like Earth.

Proxima b’s equilibrium temperature is within the range where water may be in liquid form on its surface, the researchers believe.

It orbits around Proxima Centauri, a red-dwarf located only 4.25 light years away in the closest star system, Alpha Centauri. It’s much closer to its star than the Earth is to the Sun at 0.05 astronomical units away, so a year only lasts 11.2 days.

How Earth-like is Proxima b?

Although the signs are promising, it’s completely hypothetical that Proxima b is Earth-like, the researchers said.

Infographic compares the orbit of Proxima b around Proxima Centauri with the same region of the Solar System [Photo credit: ESO/M. Kornmesser/G. Coleman]

Infographic compares the orbit of Proxima b around Proxima Centauri with the same region of the Solar System [Photo credit: ESO/M. Kornmesser/G. Coleman]

Professor Hugh Jones, who was part of the large team analysing data from Proxima b and a physics lecturer at the University of Hertfordshire, told The Register: “Saying it’s more Earth-like than just its mass is speculative. It’s exciting because it’s the first time anybody has found a planet around the closest stars. We have been looking for ages.”

Sixteen years ago, researchers first spotted a signal that Proxima Centauri could be harbouring a planet. It took a while for confirmation because of the faint signal, Jones said.

Proxima Centauri is a faint star with a luminosity much lower than the Sun. Its surface temperature is 3,050 kelvin, as compared to the Sun’s 5,777 kelvin. Researchers used Doppler spectroscopy to measure changes in the velocity of the star caused by a gravitationally bound body that was orbiting around it.

The Doppler method is an effective way of detecting exoplanets, but it doesn’t give much information about the planet itself. Many properties, including Proxima b’s radius, are currently unknown.

Journey to Alpha Centauri

That doesn’t dampen the spirits of scientists and engineers working on the Breakthrough Starshot project, however.

Starshot was launched in April 2016 by Russian billionaire Yuri Milner and acclaimed physicist Stephen Hawking. The project aims to send tiny “nanocrafts” to the Alpha Centauri system, about 25 trillion miles away, at 15 to 20 per cent of the speed of light.

Speaking about the research, Professor Avi Loeb, Chairman of the Breakthrough Starshot advisory committee and researcher at Harvard University, told The Register: “We will celebrate this important discovery within the Starshot team.”

“The discovery of the habitable planet around the nearest star, Proxima Centauri, is strategically important for motivating the Breakthrough Starshot initiative, since it provides an obvious target for a flyby mission.

“A spacecraft equipped with a camera and various filters could take color images of the planet and infer whether it is green (harboring life as we know it), blue (with water oceans on its surface) or just brown (dry rock),” Loeb said.

The bright star is Alpha Centauri AB and Proxima Centauri is the fainter red dwarf star  [Photo credit: Digitized Sky Survey 2, Acknowledgement: Davide De Martin/Mahdi Zamani]

The bright star is Alpha Centauri AB and Proxima Centauri is the fainter red dwarf star [Photo credit: Digitized Sky Survey 2, Acknowledgement: Davide De Martin/Mahdi Zamani]

Proxima b has another property that increases its chances of harbouring life, Loeb, who was uninvolved in the research, said.

“Low-mass stars burn nuclear fuel at a slower rate, so they are more likely to live longer. Proxima Centauri is smaller than our Sun and will live about a thousand times longer. This means that any life on the planet has a longer time to develop and survive,” Loeb told The Register.

“Hence, a habitable rocky planet around Proxima would be the most natural location to where our civilization could aspire to move after the Sun will die, five billion years from now.”

The prospect of nanobots venturing to Proxima b to take photos is still very far away, and with current technology it’s still difficult to resolve Proxima b from its star. But with better telescopes and sensitive instruments being built in the next decade, the close proximity of Proxima b gives researchers their best fighting chance yet of looking out for extraterrestrial life.

Source

 

Leave a Comment

June 23, 2016

NASA reveals the X-57, its electric plane project

Filed under: Cool, Gadgets, Military, Space Ships — bferrari @ 2:57 pm

1466451753763Artist’s concept of the X-57. (NASA Langley/Advanced Concepts Lab, AMA, Inc.)

 

An electric plane project is in the works at NASA, and the new aircraft is called the X-57. It’s an initiative the space agency hopes will demonstrate that electric-powered aviation can be environmentally friendly, quiet, and quick.

Made out of a modified Italian-designed plane, the X-57 will have a skinny wing with a total of 14 battery-powered motors, and because it won’t run on gas, it won’t produce exhaust from burnt fossil fuels. NASA said that having multiple small engines means the X-57 will need less energy to cruise at a speed of 175 mph.

And while traditional fuel-burning airplanes need to cruise slower than their maximum speed to be the most fuel-efficient, the space agency says that that isn’t the case with an electric-powered plane.

Related: Solar Impulse 2 attempts fuel-free trans-Atlantic flight

The “X” designation in the plane’s name places it the tradition of experimental aircraft, with the first, the X-1, the name of the plane that broke the sound barrier in 1947 at the hands of Chuck Yeager.

“With the return of piloted X-planes to NASA’s research capabilities – which is a key part of our 10-year-long New Aviation Horizons initiative – the general aviation-sized X-57 will take the first step in opening a new era of aviation,” Charles Bolden, the NASA administrator, said in a statement.

Related: Hang glider aims to break long-distance flight record

The space agency may in fact make more than one aircraft in the program. “As many as five larger transport-scale X-planes also are planned as part of the initiative,” NASA says. The plane is also called Maxwell, named after James Clerk Maxwell, a vanguard in the study of electromagnetism.

The power of clean energy in aviation is in the spotlight lately, as the sun-powered aircraft Solar Impulse 2took off from New York’s Kennedy airport at 2:30 a.m. EDT Monday, on a daring trip across the Atlantic Ocean— the latest leg of a record-breaking solar-powered journey around the world meant to showcase the power of renewable energy.

Source

Leave a Comment

June 3, 2016

Did our sun steal ‘Planet 9’ from another star?

Filed under: Cool, Dwarf Planets, Exoplanets, Kuiper Belt, Near Earth Objects (NEOs), Outer Solar System — bferrari @ 8:35 am

1464879887852

There are eight planets in our solar system, and have been officially ever since Pluto was reclassified as a dwarf planet in 2006. But what if there was a ninth planet, billions of miles past Neptune?

Earlier this year, researchers from CalTech announced that they had found signs of the planet, which is referred to a “Planet 9,” through modeling and computer simulations. If a ninth planet were out there, it would be a big one— ten times the mass of Earth— and very, very far away, completing just one orbit around the sun as slowly as perhaps every 10,000 to 20,000 years.

Related: Scientists may have just found a ninth planet and it’s massive

Now, scientists from Lund University in Sweden have used computer simulations to propose a new theory about how Planet 9— if it exists— came to be a member of the solar system. They propose that it was stolen by our sun from another star about 4.5 billion years ago.

“What we were arguing was that you could create this [Planet 9] around another star, and then the sun could capture it, in a close encounter,” Alexander Mustill, a researcher in the department of astronomy and theoretical physics at Lund University, explained in a video about the theory.

Related: NASA identifies 1,284 new exoplanets, most ever announced at once

“We argue that this is how you could put this planet on a wide orbit around the sun,” he added. “You first create it around another star, and then the sun captures it.”

The researchers argue that this would make this planet an exoplanet, which is the term scientists use to describe planets in other star systems beyond our own. Just last month, NASA announced that they had added over 1,200 new exoplanets to the official roster, all of them discoveries from the Kepler spacecraft that had been validated through a new statistical method.

Related: Planet discovery fuels interest in mythical world of deep space

“It’s very exciting to this that there might be an extrasolar planet in our own solar system,” Mustill said.

The study proposing the new theory about Planet 9 was published online in the Monthly Notices of the Royal Astronomical Society in April.

Source

Leave a Comment

May 3, 2016

Three newly discovered Earth-sized planets may be prime spot to hunt alien life

Filed under: Cool, Exoplanets, Extraterrestrial Life, Space Exploration — bferrari @ 10:56 am
The artist’s impression provided by European Southern Observatory on May 2, 2016 shows an imagined view from the surface one of the three planets orbiting an ultracool dwarf star just 40 light-years from Earth that were discovered using the TRAPPIST telescope at ESO’s La Silla Observatory. (ESO/M. Kornmesser via AP)

The artist’s impression provided by European Southern Observatory on May 2, 2016 shows an imagined view from the surface one of the three planets orbiting an ultracool dwarf star just 40 light-years from Earth that were discovered using the TRAPPIST telescope at ESO’s La Silla Observatory. (ESO/M. Kornmesser via AP)

Astronomers searching for life beyond our solar system may need to look no farther than a little, feeble nearby star.

A Belgian-led team reported Monday that it’s discovered three Earth-sized planets orbiting an ultra-cool dwarf star less than 40 light-years away. It’s the first time planets have been found around this type of star — and it opens up new, rich territory in the search for extraterrestrial life.

Because this star is so close and so faint, astronomers can study the atmospheres of these three temperate exoplanets and, eventually, hunt for signs of possible life. They’re already making atmospheric observations, in fact, using NASA’s Spitzer Space Telescope. The Hubble Space Telescope will join in next week.

Altogether, it’s a “winning combination” for seeking chemical traces of life outside our solar system, said Massachusetts Institute of Technology researcher Julien de Wit, a co-author of the study, released by the journal Nature.

The star in question — named Trappist-1 after the Belgian telescope in Chile that made the discovery — is barely the size of Jupiter and located in the constellation Aquarius.

Other exoplanet searches have targeted bigger, brighter stars more like our sun, but the starlight in these cases can be so bright that it washes out the signatures of planets. By comparison, cool dwarf stars that emit infrared light, like Trappist-1, make it easier to spot potential worlds.

University of Liege astronomers in Belgium — lead study authors Michael Gillon and Emmanuel Jehin — built the Trappist telescope to observe 60 of the nearest ultra-cool dwarf stars. The risky effort paid off, de Wit noted in an email.

“Systems around these tiny stars are the only places where we can detect life on an Earth-sized exoplanet with our current technology,” Gillon said in a statement. “So if we want to find life elsewhere in the universe, this is where we should start to look.”

The two inner exoplanets take between 1.5 and 2.4 days to orbit the Trappist-1 star. The precise orbit time of the third planet is not known, but it falls somewhere between 4.5 days and 73 days. That puts the planets 20 times to 100 times closer to their star than Earth is to our sun, Gillon noted. The setup is more similar in scale to Jupiter’s moons than to our solar system, he added.

Although the two innermost planets are very close to the star, it showers them with only a few times the amount of energy that Earth receives from our own sun. The third exoplanet farther out may receive significantly less of such radiation than Earth does.

The astronomers speculate the two inner exoplanets may have pockets where life may exist, while the third exoplanet actually might fall within the habitable zone — real estate located at just the right distance from a star in order to harbor water and, possibly, life.

Spitzer and Hubble should answer whether the exoplanets have large and clear atmospheres, according to de Wit. They also might be able to detect water and methane, if molecules are present.

Future observatories, including NASA’s James Web Space Telescope set to launch in 2018, should unearth even more details.

Gillon and his colleagues identified the three exoplanets by observing regular dips in the infrared signals emanating from the Trappist-1 star, some 36 light-years away. A single light-year represents about 6 trillion miles.

The astronomers conducted the survey last year using the Transiting Planets and Planetesimals Small Telescope, or Trappist. It’s considered a prototype for a more expansive European project that will widen the search for potentially habitable worlds to 500 ultra-cool stars. This upcoming project is dubbed Speculoos — short for Search for Habitable Planets Eclipsing Ultra-Cool Stars.

Source

Leave a Comment
Older Posts »

Create a free website or blog at WordPress.com.