SpaceJibe

November 12, 2014

TOUCHDOWN ! Rosetta’s Philae Probe Touches Down on a Comet !

Filed under: Comets, Gadgets, Kuiper Belt, Oort Cloud — bferrari @ 2:25 pm
Farewell Philae - narrow-angle view

Farewell Philae – narrow-angle view

ESA’s Rosetta mission has soft-landed its Philae probe on a comet, the first time in history that such an extraordinary feat has been achieved.

After a tense wait during the seven-hour descent to the surface of Comet 67P/Churyumov–Gerasimenko, the signal confirming the successful touchdown arrived on Earth at 16:03 GMT (17:03 CET).

The confirmation was relayed via the Rosetta orbiter to Earth and picked up simultaneously by ESA’s ground station in Malargüe, Argentina and NASA’s station in Madrid, Spain. The signal was immediately confirmed at ESA’s Space Operations Centre, ESOC, in Darmstadt, and DLR’s Lander Control Centre in Cologne, both in Germany.

The first data from the lander’s instruments were transmitted to the Philae Science, Operations and Navigation Centre at France’s CNES space agency in Toulouse.

“Our ambitious Rosetta mission has secured a place in the history books: not only is it the first to rendezvous with and orbit a comet, but it is now also the first to deliver a lander to a comet’s surface,” noted Jean-Jacques Dordain, ESA’s Director General.

“With Rosetta we are opening a door to the origin of planet Earth and fostering a better understanding of our future. ESA and its Rosetta mission partners have achieved something extraordinary today.”

“After more than 10 years travelling through space, we’re now making the best ever scientific analysis of one of the oldest remnants of our Solar System,” said Alvaro Giménez, ESA’s Director of Science and Robotic Exploration.

“Decades of preparation have paved the way for today’s success, ensuring that Rosetta continues to be a game-changer in cometary science and space exploration.”

“We are extremely relieved to be safely on the surface of the comet, especially given the extra challenges that we faced with the health of the lander,” said Stephan Ulamec, Philae Lander Manager at the DLR German Aerospace Center.

“In the next hours we’ll learn exactly where and how we’ve landed, and we’ll start getting as much science as we can from the surface of this fascinating world.”

Rosetta was launched on 2 March 2004 and travelled 6.4 billion kilometres through the Solar System before arriving at the comet on 6 August 2014.

Philae touchdown

Philae touchdown

“Rosetta’s journey has been a continuous operational challenge, requiring an innovative approach, precision and long experience,” said Thomas Reiter, ESA Director of Human Spaceflight and Operations.

“This success is testimony to the outstanding teamwork and the unique know how in operating spacecraft acquired at the European Space Agency over the decades.”

The landing site, named Agilkia and located on the head of the bizarre double-lobed object, was chosen just six weeks after arrival based on images and data collected at distances of 30–100 km from the comet. Those first images soon revealed the comet as a world littered with boulders, towering cliffs and daunting precipices and pits, with jets of gas and dust streaming from the surface.

Following a period spent at 10 km to allow further close-up study of the chosen landing site, Rosetta moved onto a more distant trajectory to prepare for Philae’s deployment.

Five critical go/no-go decisions were made last night and early this morning, confirming different stages of readiness ahead of separation, along with a final preseparation manoeuvre by the orbiter.

Deployment was confirmed at 09:03 GMT (10:03 CET) at a distance of 22.5km from the centre of the comet. During the seven-hour descent, which was made without propulsion or guidance, Philae took images and recorded information about the comet’s environment.

“One of the greatest uncertainties associated with the delivery of the lander was the position of Rosetta at the time of deployment, which was influenced by the activity of the comet at that specific moment, and which in turn could also have affected the lander’s descent trajectory,” said Sylvain Lodiot, ESA Rosetta Spacecraft Operations Manager.

“Furthermore, we’re performing these operations in an environment that we’ve only just started learning about, 510 million kilometres from Earth.”

Touchdown was planned to take place at a speed of around 1 m/s, with the three-legged landing gear absorbing the impact to prevent rebound, and an ice screw in each foot driving into the surface.

But during the final health checks of the lander before separation, a problem was detected with the small thruster on top that was designed to counteract the recoil of the harpoons to push the lander down onto the surface. The conditions of landing – including whether or not the thruster performed – along with the exact location of Philae on the comet are being analysed.

The first images from the surface are being downlinked to Earth and should be available within a few hours of touchdown.

Over the next 2.5 days, the lander will conduct its primary science mission, assuming that its main battery remains in good health. An extended science phase using the rechargeable secondary battery may be possible, assuming Sun illumination conditions allow and dust settling on the solar panels does not prevent it. This extended phase could last until March 2015, after which conditions inside the lander are expected to be too hot for it to continue operating.

Science highlights from the primary phase will include a full panoramic view of the landing site, including a section in 3D, high-resolution images of the surface immediately underneath the lander, on-the-spot analysis of the composition of the comet’s surface materials, and a drill that will take samples from a depth of 23 cm and feed them to an onboard laboratory for analysis.

The lander will also measure the electrical and mechanical characteristics of the surface. In addition, low-frequency radio signals will be beamed between Philae and the orbiter through the nucleus to probe the internal structure.

The detailed surface measurements that Philae makes at its landing site will complement and calibrate the extensive remote observations made by the orbiter covering the whole comet.

“Rosetta is trying to answer the very big questions about the history of our Solar System. What were the conditions like at its infancy and how did it evolve? What role did comets play in this evolution? How do comets work?” said Matt Taylor, ESA Rosetta project scientist.

“Today’s successful landing is undoubtedly the cherry on the icing of a 4 km-wide cake, but we’re also looking further ahead and onto the next stage of this ground-breaking mission, as we continue to follow the comet around the Sun for 13 months, watching as its activity changes and its surface evolves.”

While Philae begins its close-up study of the comet, Rosetta must manoeuvre from its post-separation path back into an orbit around the comet, eventually returning to a 20 km orbit on 6 December.

Next year, as the comet grows more active, Rosetta will need to step further back and fly unbound ‘orbits’, but dipping in briefly with daring flybys, some of which will bring it within just 8 km of the comet centre.

The comet will reach its closest distance to the Sun on 13 August 2015 at about 185 million km, roughly between the orbits of Earth and Mars. Rosetta will follow it throughout the remainder of 2015, as they head away from the Sun and activity begins to subside.

“It’s been an extremely long and hard journey to reach today’s once-in-a-lifetime event, but it was absolutely worthwhile. We look forward to the continued success of the great scientific endeavour that is the Rosetta mission as it promises to revolutionise our understanding of comets,” said Fred Jansen, ESA Rosetta mission manager.

June 30, 2014

Ancient asteroid destroyer finally found, and it’s a new kind of meteorite

Filed under: Asteroids, Comets, Earth, Inner Solar System, Kuiper Belt, Oort Cloud — bferrari @ 8:56 am

Illustration of a meteor shower.argus/Shutterstock.com

For 50 years, scientists have wondered what annihilated the ancestor of L-chondrites, the roof-smashing, head-bonking meteorites that frequently pummel Earth.

Now, a new kind of meteorite discovered in a southern Sweden limestone quarry may finally solve the mystery, scientists report. The strange new rock may be the missing “other half” from one of the biggest interstellar collisions in a billion years.

“Something we didn’t really know about before was flying around and crashed into the L-chondrites,” said study co-author Gary Huss of the University of Hawaii at Manoa.

The space rock is a 470-million-year-old fossil meteorite first spotted three years ago by workers at Sweden’s Thorsberg quarry, where stonecutters have an expert eye for extraterrestrial objects. Quarriers have plucked 101 fossil meteorites from the pit’s ancient pink limestone in the last two decades. [Photos: New Kind of Meteorite Found in Sweden]

Researchers have nicknamed the new meteorite the “mysterious object” until its formal name is approved, said lead study author Birger Schmitz, of Lund University in Sweden and Chicago’s Field Museum. It will likely be named for a nearby church, the sterplana, he said.

Mysterious find

Geochemically, the meteorite falls into a class called the primitive achondrites, and most resembles a rare group of achondrites called the winonaites. But small differences in certain elements in its chromite grains set the mysterious object apart from the winonaites, and its texture and exposure age distinguish the new meteorite from the other 49,000 or so meteorites found so far on Earth.

“It’s a very, very strange and unusual find,” Schmitz told Live Science’s Our Amazing Planet.

The new meteorite was recently reported online in the journal Earth and Planetary Science Letters, and the study will appear in the journal’s Aug. 15 print edition.

Until now, all of the quarry’s fossil meteorites were L-chondrites. Schmitz, who has led the chondrite cataloging, admitted the rock hunt had become “quite boring.”

But the rare find has not only revitalized interest in the quarry, it has also brought together the world’s top meteorite experts for a global hunt through geologic time. Thanks to Schmitz’s careful detective work on meteorites, scientists now know that each kind of meteorite leaves behind a unique calling card: tough minerals called spinels. Even if meteorites weather away, their spinels linger for hundreds of million of years in Earth rocks. Schmitz and his cohorts think they can pin down how many meteorites rained down on Earth in the past 2.5 billion years, as well as what kind fell, by extracting extraterrestrial spinels from sedimentary rocks. Their work may confirm suspicions that recent meteorite falls represent a mere fraction of the rocks drifting in space.

“I think our new finding adds to the understanding that the meteorites that come down on Earth today may not be entirely representative of what is out there,” Schmitz said. “One thing our study shows is that we maybe don’t know as much as we think we know about the solar system.”

Ancient wreckage

The limestone quarry preserves the remnants of a cosmic cataclysm that took place 470 million years ago, during the Ordovician Period. Scientists think there was an enormous crash between two large bodies out in the asteroid belt. The crash blew apart two asteroids, or an asteroid and comet, slinging dust and debris toward Earth. One of the impactors was the source of all L-chondrite meteorites. But no one has ever found a piece of the rock that hit the L-chondrite parent, until now.

The Swedish meteorite’s exposure age the length of time it sailed through space is the key to placing the fossil space rock at the scene of the crash. The meteorite zipped from the asteroid belt to Earth in just 1 million years. That’s the same remarkably young exposure age as the L-chondrites recovered from the Thorsberg quarry, suggesting the rocks sprayed Earth in the same wave of space debris. [Infographic: Asteroid Belt Explained]

Meteorite expert Tim Swindle, who was not involved in the study, praised the team’s careful analysis and said it was unlikely that any other meteorite but an Ordovician fragment would have such a short exposure age. “Very, very few modern meteorites have exposure ages that low,” said Swindle, a professor at the University of Arizona in Tucson. “Typically, it takes things longer to get here from the asteroid belt,” he said. “It’s a telling argument.”

But because so little is left of the original meteorite almost all its minerals have been altered to clay Swindle thinks there’s wiggle room for linking it to known classes of meteorite, instead of calling it a new find.

“I think it’s entirely plausible [that it’s a new kind of meteorite], and it’s a great study, but that’s not a guarantee they’ve got it right,” Swindle said. “But if they didn’t, it’s because of new things we’ll find out in future work, not because of their analysis.”

The geochemical tests were performed on sand-sized chromite spinels, which confirmed the rock’s extraterrestrial origin. The altered clay is also about 100,000 times richer in iridium than terrestrial rocks. Iridium is the element that marks the meteorite impact horizon when the dinosaurs went extinct.

Hunt for space history

Schmitz now plans to search for these strange achondrite spinels in the quarry sediments, as well as in other rocks of the same age around the world. Ordovician meteorite spinels from L-chondrites have been found in China, Russia and Sweden, and small micrometeorites have been discovered in Scotland and South America. Researchers think about 100 times as many meteorites fell on Earth during the Ordovician compared with today, but only about a dozen impact craters of the proper age have been identified. [Crash! 10 Biggest Impact Craters on Earth]

A bigger quest is also in the works. Schmitz and his colleagues plan to dissolve tons of rock in acid in a global search for meteoritic spinel grains. This detective work will help researchers pin down the history of the asteroid belt and solar system. Spinels can provide an estimate of how many meteorites fell in the past, and what kind hit Earth. These tiny pieces of vanished meteorites may fill in missing history, because meteorite impact craters often vanish due to geologic forces.

“This can give you a ground truth for models for how the solar system may have evolved over time,” said Gary Huss, a co-author on the Swedish meteorite study who will collaborate on the spinel search. “I think a lot of people have worried for some time that we don’t really know what’s going on in the asteroid belt.”

Source

October 9, 2013

Meet the asteroid that might hit Earth in 2880

Radar image of 1950 DA acquired by the Arecibo Observatory on March 4, 2001. (NASA/JPL/S. OSTRO)

Radar image of 1950 DA acquired by the Arecibo Observatory on March 4, 2001. (NASA/JPL/S. OSTRO)

There are over 10,000 near-Earth objects (NEOs) that have been identified so far — asteroids and comets of varying sizes that approach the Earth’s orbital distance to within about 28 million miles. Of the 10,000 discoveries, roughly 10 percent are larger than six-tenths of a mile in size — large enough to have disastrous global consequences should one impact the Earth.

This is one of them.

First discovered in February 1950, 1950 DA is a 1.1-kilometer-wide asteroid that was observed for 17 days and then disappeared from view. Then it was spotted again on Dec. 31, 2000 — literally on the eve of the 21st century. Coupled with radar observations made a few weeks later in March 2001 it was found that, along with a rather high rotation rate (2.1 hours), asteroid 1950 DA has a trajectory that will bring it very close to Earth on March 16, 2880. How close? Close enough that, within a specific 20-minute window, a collision can not be entirely ruled out.

Top 10 Ways to Stop an Asteroid

The image above was made from radar observations by the Arecibo Observatory in Puerto Rico in March 2001, when 1950 DA passed within 4.8 million miles of Earth. Is this the mug shot of a future continent-killer?

Radar analysis and research of 1950 DA performed by NASA’s Jet Propulsion Laboratory scientists J.D. Giorgini, S. J. Ostro, Don Yeomans and several others from JPL and other institutions revealed that the impact probability from 1950 DA in March 2880 is, at most, 1 in 300 based on what is known about the asteroid so far.

1 in 300 may sound like a slim chance, but actually this represents a risk 50% greater than that of the average hazard due to all other asteroids from now to then.

However, that’s a maximum value. The study also noted the collision probability for 1950 DA as being in the range from 0 to 0.33%. That upper limit could increase or decrease as more is learned about the asteroid. (The next opportunity for studying 1950 DA via radar is in 2032.)

There are many factors that influence the path of an asteroid through space. Its spin rate, reflectivity (albedo), composition, mass, terrain variations… gravitational interactions with other bodies, some of which may not even have been discovered yet… all of these can affect the movement of an asteroid and, more specifically, its exact position at a future point in time. While many of these things still aren’t precisely known for 1950 DA, one in particular could end up being the saving grace for our descendants: the Yarkovsky effect.

PHOTOS: Russian Meteor Strike Aftermath

A small but important force acting upon asteroids, the Yarkovsky effect is a “nudge” created by thermal emission. As an asteroid gathers heat energy from the sun, it releases some of that energy back into space. Thanks to Newtonian mechanics the sheer act of doing so creates a physical push back on the asteroid itself, altering its course ever so slightly. Over a long span of time, this slight alteration could result in the relocation of 1950 DA away from the spot in space where Earth will be on March 16, 2880… at least enough so that a miss is certain.

In fact, recent research by JPL scientists D. Farnocchia and S.R. Chesley have taken into consideration the Yarkovsky effect on 1950 DA based on known values from previous observations, as well as new research suggesting that the asteroid has a retrograde rotation. While their latest assessment does put the risk of an impact in 2880 within the lower end of the probability spectrum (4×10^-4, or -0.58 on the Palermo Scale) it is still far from zero, and in fact remains higher than any other known potential impacts.

PHOTOS: NASA’s Asteroid Capture Mission

So what would happen if the half-mile-wide 1950 DA were to hit Earth? While that depends on a lot of things, such as its composition, speed, angle of impact, where it impacts, etc., needless to say it would cause a lot of damage across a large area. I’m talking an energy release upwards of half a million megatons, which, were it to strike say, New York City, everything within at least a 100-mile radius would be flattened by the force of the impact alone — that’s halfway to Boston and Washington, DC. And that’s not even taking into consideration the air blast, atmospheric dust cloud, secondary impacts from debris, or damage from any resulting tsunami (if the impact were in the ocean)… the destruction would easily extend out many more hundreds of miles, and the repercussions — physical, financial, economic, and emotional — would extend around the globe.

But again, precisely where 1950 DA will be in another 866 1/2 years (and whether or not it will occupy the same point in space as our planet) relies on many factors that aren’t well known — even though its orbit is pretty well understood. More in-depth observations will need to be made, and that is why asteroids like this must be carefully — and continually — watched.

Luckily, 35 generations offers plenty of time to improve our knowledge. According to JPL’s Near-Earth Object program, “If it is eventually decided 1950 DA needs to be diverted, the hundreds of years of warning could allow a method as simple as dusting the surface of the asteroid with chalk or charcoal, or perhaps white glass beads, or sending a solar sail spacecraft that ends by collapsing its reflective sail around the asteroid. These things would change the asteroids reflectivity and allow sunlight to do the work of pushing the asteroid out of the way.”

ANALYSIS: Meet Asteroid 2013 MZ5, 10,000th Near-Earth Object

Still, whether because of ongoing research, faith in future generations of scientists, or just sheer probability, JPL remains confident that 1950 DA should cause little concern. “The most likely result will be that St. Patrick’s Day parades in 2880 will be a little more festive than usual as 1950 DA recedes into the distance, having passed Earth by.”

Let’s just hope the luck of the Irish is with our planet big time that year…

Source

January 9, 2013

Asteroid Apophis to whiz past Earth tonight — and return for more in 2036

An artist's rendering of the asteroid Apophis. (European Space Agency)

An artist’s rendering of the asteroid Apophis. (European Space Agency)

A European space telescope has captured new images of the huge asteroid Apophis, revealing that the potentially hazardous object is actually bigger than previously thought — and you have a chance to see the space rock yourself in two free webcasts tonight.

Asteroid Apophis has long been billed as a “doomsday asteroid” because of a 2004 study that predicted a 2.7 percent chance of the space rock hitting Earth when it passes within 22,364 miles of the planet in April 2029, European Space Agency officials said. Later studies proved, however, that the asteroid poses no threat to Earth during that flyby, but astronomers continue to track the object since it will make another pass near Earth in 2036.

 

Today, ESA officials announced that its infrared Herschel Space Observatory has discovered that Apophis is about 1,066 feet wide, nearly 20 percent larger than a previous estimate of 885 feet.

“The 20 percent increase in diameter … translates into a 75 percent increase in our estimates of the asteroid’s volume or mass,” study leader Thomas Müller of the Max Planck Institute for Extraterrestrial Physics in Garching, Germany, said in a statement. [Photos of Near-Earth Asteroid Apophis]

‘Alone among all these near-Earth asteroids that have passed our way in recent years, Apophis has generated the most concern worldwide.’

– Slooh president Patrick Paolucci

Tonight’s two free webcasts will stream live views of Apophis from telescopes in Italy and the Canary Islands tonight (Jan. 10). The webcasts, offered by the stargazing websites Slooh Space Telescope and Virtual Telescope Project, will show Apophis as a bright light moving across the night sky. The asteroid is too small to be seen through small backyard telescopes.

The Slooh Space Camera webcast will begin at 7 p.m. EST (0000 Jan. 10 GMT). The Virtual Telescope webcast will begin an hour later at 8 p.m. EST (0100 GMT). You can watch both live webcasts of asteroid Apophis here on SPACE.com tonight.

Apophis will be just under 9.3 million miles from Earth at the time of tonight’s webcasts, amateur astronomer Gianluca Masi of the Virtual Telescope Project told SPACE.com.

“Alone among all these near-Earth asteroids that have passed our way in recent years, Apophis has generated the most concern worldwide because of its extremely close approach in 2029 and [chances of a] potential impact, albeit small, in 2036,” Slooh president Patrick Paolucci said in a statement.

In addition to asteroid Apophis, astronomers regularly scan the night sky for asteroids  that may pose a potential impact threat to Earth. NASA’s Near-Earth Object Office and Asteroid Watch program is based at the agency’s Jet Propulsion Laboratory in Pasadena, Calif.

You can track Apophis directly via the Virtual Telescope Project here: http://www.virtualtelescope.eu/webtv/

The webcast from the Slooh Space Camera can also be seen here: http://events.slooh.com/
Source

May 13, 2011

Stunning Video: Comet Collides With the Sun

Filed under: Cool, Inner Solar System, Oort Cloud, Outer Solar System, The Sun — bferrari @ 4:40 pm
NASA captured a stunning video showing this fairly bright white comet as it dove towards the Sun -- and was never heard from again.

NASA captured a stunning video showing this fairly bright white comet as it dove towards the Sun -- and was never heard from again.

Now THAT’s a close encounter.

NASA’s solar observatory captured a stunning video of a comet streaking towards the sun between Tuesday and Wednesday — and the aftermath when it collided with the tremendous ball of plasma.

The video, captured by NASA’s Solar & Heliospheric Observatory (SOHO), appears to show a fireball jet out following the collision. That’s not quite what happened, NASA explained. Instead, a coronal mass ejection coincidentally blasted out to the right just as the comet approaches and is vaporized by the sun.

The comet is probably part of the Kreutz family — remnants of a single giant comet that broke up many centuries ago, and crash against its surface from time to time. It was discovered by amateur astronomer Sergey Shurpakov, the space agency said.

In this coronagraph, an opaque disk blocks the glare of the sun like an artificial eclipse, revealing faint objects that no Earth-bound telescope could possibly see. It’s intended to allow scientists to view the faint structures in the sun’s corona — but it also reveals sungrazing comets like this one.

NASA has discovered hundreds of such comets over the years — but none that have ended their existence in such an eye-opening fashion. In late December, 2010, the sun dealt with an entire storm of icy comets that dove into its heart and died a similar, fiery death.

“The storm began on Dec 13th and ended on the 22nd,” said Karl Battams of the Naval Research Lab in Washington, DC. “During that time, the Solar and Heliospheric Observatory (SOHO) detected 25 comets diving into the sun. It was crazy!”

Scientists have yet to find a convincing physical connection between sun-grazing comets and coronal mass ejections, according to NASA.

http://www.flickr.com/photos/gsfc/5715631317/in/photostream

Source

February 24, 2009

Comet’s Heart May Have Struck Earth

Filed under: Cosmology, Inner Solar System, Oort Cloud — bferrari @ 12:48 pm
A close-up image of the Bejar bolide, photographed from Torrelodones, Madrid, Spain.  (J. Perez Vallejo/SPMN)

A close-up image of the Bejar bolide, photographed from Torrelodones, Madrid, Spain. (J. Perez Vallejo/SPMN)

Bright lights that suddenly streak across the night sky with an accompanying boom tend to elicit a flurry of phone calls to local police departments.

These rare events aren’t typically wayward missiles, or satellite debris (as was thought when one such streak recently lit up the skies over Texas), or alien invasions. But they do come from outer space.

Scientists aptly call the objects fireballs because they are the brightest meteors, or “shooting stars,” that fall to Earth.

A fireball as bright as the full moon raced across the Spanish skies on July 11, 2008, and was tracked by the Spanish Fireball Network (SPMN). Researchers used the tracking data to trace the path of the comet backwards through the sky and space; they think the boulder may be a chunk of a comet that broke up nearly 90 years ago. Their conclusions are detailed in the Feb. 11 online issue of the journal Monthly Notices of the Royal Astronomical Society.

It’s possible that chunks of the fireball made it to the ground and are waiting to be picked up, the researchers said, which would give scientists a rare glimpse into the heart of a comet.

Meteors and fireballs

Earth and the other planets of the solar system are under constant bombardment from particles that range in size from a sand grain to a boulder and are collectively known as meteoroids. Many meteoroids are the detritus left over from collisions of asteroids and comets and impacts to other planets.

If a meteoroid enters Earth’s atmosphere, it starts to burn up, forming a bright streak in the sky, called a meteor. Meteors can come from asteroid or comet fragments. If that meteor is brighter than any of the planets in the sky, it is deemed a fireball (also called a bolide).

A blazing bolide can also create a sonic boom that can be heard up to 30 miles away — these explosive noises were heard over Kentucky on Friday, Feb. 13, and over Texas on Sunday, Feb. 15, causing a number of startled citizens to call local law enforcement.

Initial speculation that these streaks of light and accompanying boom were caused by debris from the Feb. 10 collision of two satellites was later refuted by astronomers, who said it was likely a meteor. Preston Starr, the observatory manager at the University of North Texas, told the Associated Press that the object would have been about the size of a truck and that somewhere between eight and 10 such objects burn up in the atmosphere every year.

Spanish sighting

The bolide that shot across the Spanish skies in July was also seen in Portugal and southern France.

At maximum intensity, it was 150 times brighter than the full moon. It was first picked up by the SPMN above Bejar in the western part of Spain at a height of about 61 miles (98 kilometers) and disappeared from view at about 13 miles (21 kilometers) above the surface of the Earth.

A professional photographer also snapped a picture of the streak from the north of Madrid.

From these images, astronomers Josep Trigo-Rodríguez of the Institute of Space Studies, CSIC-IEEC in Spain, Jose Madiedo of the University of Huelva-CIECEM in Spain and Iwan Williams of the University of London were able to deduce the trajectory and properties of the incoming fireball.

Their work was funded by the Spanish Ministry of Science and Innovation, the National Institute of Aerospatial Technique, and the Junta de Andalucía.

The team thinks the bolide was a dense object, about 3 feet (about 1 meter) across with a mass of about 4,000 pounds (1.8 tonnes). This would be like squeezing an adult elephant down to the size of an armchair.

The rock would have been big enough that chunks of it may have survived the fiery passage through the atmosphere and hit the ground as meteorites. Finding these pieces would be a boon to science if they are, as the team suspects, remnants of a comet breakup.

The bolide traveled an unusual orbit around the sun, as determined by the astronomers, following a path that took it from beyond the orbit of Jupiter to the vicinity of Earth. This orbit is similar to that of a cloud of dust particles known as the Omicron Draconids, which on rare occasions produce a minor meteor shower on Earth.

This collection of meteoroids is thought to originate from the breakup of Comet C/1919 Q2 Metcalf in 1920.

It has been proposed that comets consist of large boulders glued together by a mixture of smaller particles and ice. If the nucleus of the comet disintegrates, the boulders are set loose in space. Finding chunks of the Bejar bolide could help confirm this theory.

“Handling pieces of comet would fulfill the long-held ambitions of scientists — it would effectively give us a look inside some of the most enigmatic objects in the solar system,” Trigo-Rodríguez said.

Source

Create a free website or blog at WordPress.com.